目录
三、使用场景2 - 给出 100 亿个不重复的无符号整数(无序),设计算法找到其中只出现一次的数
四:使用场景3 - 给两个文件,分别有 100 亿个整数(无序),我们只有 1 GB 内存,如何找到两个文件交集?
五、使用场景4 - 一个文件有 100 亿个 int,1 GB 内存,设计算法找到出现次数不超过 2 次的所有整数
一、位图概念
1、使用场景1
给出
40
亿个不重复的无符号整数(无序),再给出一个无符号整数,判断此数是否存在于40
亿个无符号整数中
这是一道来自【腾讯】的面试题,题目要求很简单:判断给出的数是否存在?
可以采用如下方法:
- 放进set或unordered_set中,再用find进行查找
- 排序,再使用二分法查找,排序的时间复杂度是O(N*logN),二分查找的时间复杂度是O(logN)
但是我们首先得先有一个足够大的数组存储这些数据,计算一下40亿个无符号整数会占多大内存呢?
但是,16GB的大小,这会很消耗内存,我们不可能把16GB的数据全部加载到内存中。既然是腾讯的题,那其中肯定有坑,常规思路是无法很好地解决问题的,此时就需要借助我们今天的主角 位图 了
2.位图
位图 是 哈希思想 的一种应用,哈希表 映射数据时使用的是 vector
,而 位图 映射数据时使用的是 比特位
,没错,就是只能表示 0
和 1
的比特位(使用直接定址法,只能判断整型),适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。
为什么 位图 能解决这种海量数据问题?
因为位图是哈希的应用,查找速度非常快,并且因为位图使用的是最小的单元:比特,空间利用率极高,而这就是【腾讯】这道面试题的最优解。
解题思路:首先 40
亿个无符号的整数,重点在 无符号,这就意味着借助下标可以映射所有的数,无符号整型的最大值为 UINT_MAX
(4294967295
),这 40
亿个数据的范围 [0
, UINT_MAX
]。
题目不过是 验证某数是否存在,因此我们可以直接创建一个大小为 UINT_MAX
的 位图 结构,将 40
亿个数统统存进去(重复数据不影响),存储完毕后,直接利用 位图 的特性:极速查找(哈希映射),就可以在 O(1)
时间内解决问题。
至于内存占用,UINT_MAX
大约相当于 512 mb
,就这点内存占用,随便给。
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
二、位图的模拟实现
注:模拟实现时,只是简单实现,旨在理解位图的原理,与库中的 bitset
存在较大差异
1.基本原理
位图 的原理其实十分简单,本质上就是 开辟了一个大小为 N,类型为 Type 的数组
获取值位于哪一个下标中:Val / TypeSize
获取值位于哪一个具体比特位:Val % TypeSize
注:Val 是待 设置/重置/判断 的值,TypeSize 是类型 Type 所占比特位数
我们模拟实现的 位图 本质上就是一个 vector<char>
的数组,不过此时使用的是 比特位
// 非类型模板参数,我们需要多少个数据,即多少个比特位
template<size_t N>
class bitset
{
public:
bitset()
{
_bits.resize(N / 8 + 1, 0);
// 除 8 是因为此时基本类型为 char
// 加 1 是为了避免不能被整除时,造成比特位丢失,宁可多开,也不能缺失
// 向上取整,如果需要65个比特位,则需9个字节,两个char
}
private:
vector<char> _bits;// 以char类型实现bitset
};
为什么要选 char ?
在 C语言 阶段,我们学习过一个知识点:大小端字节序,对于多字节的数据类型,诸如 int 存在大小端问题,比如 int a = 1
在大端机器中为:00 00 00 01
而在小端机器中为:01 00 00 00
不同机器中的二进制位排列方式略有差异(后续位运算依赖于二进制的排列方式),为了确保兼容性,我们可以直接使用 char,因为它就 1 字节(8 比特),不存在大小端字节序问题;并且 8 比特位足够少,便于学习理解位图结构。
2.set
首先来看看 如何添加数据
位图 中没有直接插入数据的概念,取而代之的是将数据对应的比特位置为 1
假设现在 位图 Bit 的大小为 32 bit,待设置的数据为 28
首先获取具体的下标:i = 28 / 8 = 3
其次获取具体的比特位:j = 28 % 8 = 4
现在只需要把 Bit[3] 元素的第五个比特位(下标为 4)置为 1 即可成功设置 数据 28
这里不考虑冗余的情况,即使目标位置为 1,照样置为 1
想要把某个比特位置为 1 可以使用 | 进行位运算:遇 1 变 1
因此 set 数据 28 时可以这样做:Bit[3] |= (1 << 4),如下图所示:
void set(size_t x)
{
size_t i = x / 8;// 找在第i个char
size_t j = x % 8;// 找在第j个比特位
// x==10, 所映射的位置在第0个char的第2个比特位上
// 比特位置为1,代表存在
_bits[i] |= (1 << j);
// 监视窗口,虚拟层,给我们看的,左高右低
// 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
// [0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0]
//
// 0000 0000 _bits[1]
// 0000 0100 1 << 2
// 0000 0100 _bits[1] |= (1 << 2);
}
3.reset
有 设置 就要有 重置(取消),也就是 reset
设置 的目的是 将指定的比特位置 1,而 重置 的目的是 把指定的比特位重置 0
至于获取 下标 和 比特位,和 设置 一样,或者说 位图 中的基本操作都离不开这两步
首先获取具体的下标:i = 28 / 8 = 3
其次获取具体的比特位:j = 28 % 8 = 4
将某个比特位置为 0,可以使用 & 进行位运算:遇 0 变 0
下面把之前 设置 的 28 进行 重置:Bit[3] &= ~(1 << 4),如下图所示
void reset(size_t x)
{
size_t i = x / 8;
size_t j = x % 8;
// 比特位置为0,代表不存在
_bits[i] &= ~(1 << j);
}
4.test
位图 中的必备功能:判断某个数据是否位于位图中(test
)
这是 位图 的核心功能,毕竟 位图 的主要作用就是 判断某个数在不在。
- 存在:对应的比特位为
1
- 不存在:对应的比特位为
0
一样的老套路:获取 下标 和 比特位,这里依旧请出老演员 28
首先获取具体的下标:i = 28 / 8 = 3
其次获取具体的比特位:j = 28 % 8 = 4
如何判断在不在?
简答:如果存在的话,对应的比特位肯定为 1
,我们只需要把该位置的其他比特位置为 0
,再判断该元素是否为 0
即可:Bit[3] & (1 << 4)
// 在或者不在
bool test(size_t x)
{
size_t i = x / 8;
size_t j = x % 8;
// 在, 对应的比特位位1,_bits[i] & (1 << j)一定不为0,就是true
// 不在,对应的比特位为0,_bits[i] & (1 << j)一定为0,就是false
return _bits[i] & (1 << j);//返回的是临时变量,真正的元素不会被修改
}
注意: 此时不能使用 &=
,不能改变原来的比特位状态,因为这里只是判断是否存在!
接下来简单验证下存 40
亿个无符号整数只需要 约 512 mb
空间
注:传递 -1
时,因为参数类型为 size_t
,会隐式类型转换为 UINT_MAX
;当然,直接传递 UINT_MAX
也是可以的
void testBitSet2()
{
bitset<-1> Bit; //创建可容纳 [0, UINT_MAX]数值 的位图
bitset<UINT_MAX> Bit; //创建可容纳 [0, UINT_MAX]数值 的位图
while (true); //查看任务管理器中的内存占用情况
}
所以说,用 位图 可以解决 【腾讯】的那一道海量数据面试题,同时也是最优解,查找速度为 O(1)
注意: 此时的测试环境为 x86
,x64
环境下会报错
三、使用场景2 - 给出 100
亿个不重复的无符号整数(无序),设计算法找到其中只出现一次的数
给出
100
亿个不重复的无符号整数(无序),设计算法找到其中只出现一次的数
数据量变大了一倍多,没事,再多开一点,需要约 1.2 GB
的内存空间,此时内存不是问题的重点,重点在于如何设计 算法。
对于这种在两堆数中找只出现一次的数,避免不了同时遍历两堆数,所以我们需要 2
个 位图,并且大小都为 100
亿,总占用约 2.4 GB
的内存空间。
解题思路:二进制,我们把 位图1
看作高位,位图2
看作低位,第一次出现时,给 位图2
进行设置,后续第二次乃至第N次出现时,重置 位图2
,设置 位图1
;经过这样操作后,只要是 位图2
为 1
,就说明该数仅出现了一次。
设置:
0 0
没有出现0 1
只出现一次1 0
出现多次
// 在100亿个整数中找出只出现一次的数字
//
// 00 - 不在
// 01 - 出现一次
// 10 - 出现一次以上
template<size_t N>
class twoBitSet
{
public:
void set(size_t x)
{
// 00 -> 01 - 第一次出现
if (_bs1.test(x) == false && _bs2.test(x) == false)
{
_bs2.set(x);
}
else if (_bs1.test(x) == false && _bs2.test(x) == true)
{
// 01 -> 10 - 第一次变成多次
_bs1.set(x);
_bs2.reset(x);
}
// 10 - 出现多次就不再就行任何操作
}
void Print()
{
for (size_t i = 0; i < N; ++i)
{
// 只出现一次 - 只需判断位图2里是不是1就行
if (_bs2.test(i))
cout << i << endl;
}
}
public:
bitset<N> _bs1;
bitset<N> _bs2;
};
void test_twobitset()
{
int a[] = { 3, 45, 53, 32, 32, 43, 3, 2, 5, 2, 32, 55, 5, 53,43,9,8,7,8 };
twobitset<100> bs;
for (auto e : a)
{
bs.set(e);
}
bs.Print();
//
}
四、使用场景3 - 给两个文件,分别有 100
亿个整数(无序),我们只有 1 GB
内存,如何找到两个文件交集?
给两个文件,分别有
100
亿个整数(无序),我们只有1 GB
内存,如何找到两个文件交集?
此时只有 1 GB
的可用空间,意味着我们只有一个 位图(100
亿整数中有大量重复的数据,至多有 42
亿多个数,所以 1 GB
空间足够了)
解决方案一:
先读取其中一个文件,将数据设置入 位图
中;然后再读取另一个文件,此时是判断第二个文件中的数据是否存在于 位图
中,如存在,就说明是交集。
这种方案面临一个问题:存在重复的值,比如 文件1{1, 2}
,文件2{1, 3, 1, 2}
,此时得出的交集为 {1, 1, 2}
,交集中是没有重复值的,想要解决这个问题有两个方法:
- 初步得到交集后进行去重,就能得到最终的交集
- 判断该数是否为交集,如果是,记录交集值后,把位图中的交集值给
reset(置0)
,这样即使后续有重复的值,也不会被纳入交集了。
解决方案二:
(无内存空间限制的情况下)直接搞两个位图,把两个文件都读进去,然后同时遍历,通过 &
位运算求出交集就行了
这种方案很暴力,对空间要求较高,且每次遍历的时间都是恒定的(42
亿次)
抛开题目中的内存空间限制,解决方案一、二各有自己的使用场景
- 数据量过大时,比如 42 亿或更多,适合使用方案二(个数相关),因为 不管值再大,整数不过 42 亿多个,方案二在进行遍历时,也只需要遍历 42 亿次,是比较合适的。
- 当数据量较小时,比如 1 亿,就可以考虑方案一了(值相关),原因很简单:节省空间的同时不至于遍历太多次,方案一遍历时,遍历的是数据量,只需要遍历 1 亿次。
可惜本题有内存空间限制,还是老老实实的使用方案一吧
五、使用场景4 - 一个文件有 100
亿个 int
,1 GB
内存,设计算法找到出现次数不超过 2
次的所有整数
一个文件有
100
亿个int
,1 GB
内存,设计算法找到出现次数不超过2
次的所有整数
这道题是 问题二 的变形,只需要推广 设置 即可,照样使用两个 位图
设置:
- 一次都没有出现:
0 0
- 只出现一次:
0 1
- 出现两次:
1 0
- 出现三次或更多:
1 1
把代码稍微修改下,可得出代码
template<size_t N>
class twoBitSet
{
public:
void set(size_t val)
{
// 00 -> 01 - 第一次出现
if (_bs1.test(x) == false && _bs2.test(x) == false)
{
_bs2.set(x);
}
else if (_bs1.test(x) == false && _bs2.test(x) == true)
{
// 01 -> 10 - 第一次变成两次
_bs1.set(x);
_bs2.reset(x);
}
else if (_bs1.test(val) == true && _bs2.test(val) == false)
{
//10 -> 11 - 两次变多次
_bs2.set(val);
}
}
void Print()
{
//输出不超过 2 次的数字
for (size_t i = 0; i <= N; ++i)
{
if ((!_bs1.test(i) && _bs2.test(i)) || (_bs1.test(i) && !_bs2.test(i)))
cout << i << endl;
}
}
private:
bitset<N> _bs1;
bitset<N> _bs2;
};
void testTwoBitSet2()
{
int a[] = { 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 5, 6, 7, 8, 8 };
twoBitSet<100> Bits; //最大的值不过 100,所以 100 足够了
for (auto e : a)
{
Bits.sSet(e);
}
Bits.Print();
}
六、总结:
位图 是一种十分特殊的数据结构,其主要依靠 0
和 1
表征状态,结合 哈希 的映射思想,即保证了 速度,又保证了 空间
位图 的优点如下:
- 速度极快
O(1)
- 节省空间 使用粒度最细的比特位
位图 的缺点如下:
- 只能映射整型
- 对于浮点符、字符串等数据无法做到很好的映射
位图 的应用场景:
- 快速查找某个数据是否在一个集合中
- 排序 + 去重
- 求两个集合的交集、并集等
- 操作系统中磁盘块标记