pytorch加载数据

该博客演示了如何使用PyTorch的torchaudio库加载YESNO数据集,通过DataLoader处理批量数据,并进行简单的数据迭代与可视化。重点在于数据加载和Tensor转换,以及使用matplotlib对音频波形进行展示。
摘要由CSDN通过智能技术生成

加载数据关键在于:torch.utils.data.Dataloader(可以加载数据集,并将数据集转为Tensor形式)
#安装包
!pip install torchaudio

import torch 
import torchaudio

#访问数据集
yesno_data=torchaudio.datasets.YESNO('./',download=True)
#加载数据集
data_loader=torch.utils.data.DataLoader(yesno_data,batch_size=1,shuffle=True)
#迭代数据
for data in data_loader:
print(data)
print(f'waveform{data[0]},sample_rate{data[1]},labels{data[2]}')
  break
#可视化数据
import matplotlib.pyplot as plt
print(data[0][0].numpy())
print(waveform.t())
d=waveform.t().numpy()
print(type(d))
plt.plot(waveform.t().numpy())
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YingJingh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值