EMNLP-21-Learning from Noisy Labels for Entity-Centric Information Extraction-noise label

本文介绍了一种利用多个独立模型和一致性损失的方法,针对存在噪声标签的实体中心信息抽取任务。模型通过任务特定损失和模型间预测一致性评估进行联合优化,显著提升了性能。研究强调了在无外部资源情况下,通过协正则化提高模型鲁棒性的重要性和效果。
摘要由CSDN通过智能技术生成

Learning from Noisy Labels for Entity-Centric Information Extraction

1领域

解决noisy label问题,采用多个独立的model,联合优化。——堪称人多力量大

我们的目标,是在不使用外部资源的情况下学习一个具有来自 D 的噪声标记实例的抗噪声模型

2总结

可以借鉴这种思路。处理noise label。
在消融实验中,提到,主要结果表明,在协正则化框架中使用模型的两个副本已经显着提高了性能。

3模型组成

整个模型是由两部分组成,一是task specific loss(每个特定任务下的loss),一是agreement loss(多个模型产生的loss,是为了评定多个模型预测的可能性分布的一致性——KL散度)。
KL散度是用来评价分布一致性的指标。

4模型训练过程

1. 初始化:多个结构相同的model用于解决同一个任务。任务特定模型的 M (M ≥ 2) 个副本组成,表示为 {fk}M
k=1,具有不同的初始化。关于初始化,对于从头开始训练的模型,所有参数都是随机初始化的否则,对于那些基于预训练语言模型的模型,只有语言模型外部的参数(例如,下游softmax 分类器的参数)被随机初始化,而预训练参数是相同的
2. warm-up phrase——在任务中微调模型参数,使得模型covergence on the task
3. 当一个新批次进来时,我们
首先计算 M 个模型 {L(k) sup}M k=1 上的任务特定训练损失并将它们平均为 LT,然后更新模型参数 w.r.t。
LT。在warm-up之后,进一步引入了一致性损失 Lagg 来衡量从 M 个模型的预测到软目标概率 q 的距离。根据联合损失 L 相应地更新参数,鼓励模型生成与训练标签和软目标概率一致的预测。

在这里插入图片描述

5细节

每个target 的probability是通过average 所有的prediction得到。表示为:
在这里插入图片描述

在计算agreement loss时,是计算每个单独model和qi的KL散度得到的。
在这里插入图片描述
总的损失函数为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YingJingh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值