给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
题解
方法一 注意遇到a+b+c+d+…==0这种形式时可以考虑用到哈希表
固定左端点k 双指针i和j从k和len-1分别向中间移动,中途判断三数之和是否为零
题解转载自Krahets
以及代码随想录
暴力法搜索为 O(N ^3 ) 时间复杂度,可通过双指针动态消去无效解来优化效率。
双指针法铺垫: 先将给定 nums 排序,复杂度为 O(NlogN)。
双指针法思路: 固定 3 个指针中最左(最小)数字的指针 k,双指针 i,j 分设在数组索引 (k,len(nums)) 两端,通过双指针交替向中间移动,记录对于每个固定指针 k 的所有满足 nums[k] + nums[i] + nums[j] == 0 的 i,j 组合:
- 当 nums[k] > 0 时直接break跳出:因为 nums[j] >= nums[i] >= nums[k] > 0,即 3 个数字都大于 0 ,在此固定指针 k 之后不可能再找到结果了。
- 当 k > 0且nums[k] == nums[k - 1]时即跳过此元素nums[k]:因为已经将 nums[k - 1] 的所有组合加入到结果中,本次双指针搜索只会得到重复组合。
- i,j 分设在数组索引 (k,len(nums)) 两端,当i < j时循环计算s = nums[k] + nums[i] + nums[j],并按照以下规则执行双指针移动:
- 当s < 0时,i += 1并跳过所有重复的nums[i];
- 当s > 0时,j -= 1并跳过所有重复的nums[j];
- 当s == 0时,记录组合[k, i, j]至res,执行i += 1和j -= 1并跳过所有重复的nums[i]和nums[j],防止记录到重复组合。
//哈希表边界条件有点复杂,此题可考虑双指针法
/*
1.先排序,为了便于使用双指针,复杂度O(logN)
2.固定最小指针k,双指针i和j分别从0和len-1向中间移动
从两端向中间移动是为了使得两个数下标不重合,且可以将时间复杂度从双重循环的O(N^2)降到O(N)
3.终止条件:k>N-3||nums[k]>0(此时三数之和必定大于0)
3.不可以包含重复元素:找到满足条件的序列后,前后元素相同时跳过
*/
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
int sum=0,k=0,i,j;
List<List<Integer>> res = new ArrayList<>();
while(k<=nums.length-3&&nums[k]<=0){
i=k+1;
j=nums.length-1;
//跳过此元素nums[k]:因为已经将 nums[k - 1] 的所有组合加入到结果中,本次双指针搜索只会得到重复组合
//if (nums[k] == nums[k + 1])就把三元组中出现重复元素的情况直接pass掉了。 例如{-1, -1 ,2} 这组数据
//我们要做的是 不能有重复的三元组,但三元组内的元素是可以重复的
if(k>0&&nums[k]==nums[k-1]){
k++;
continue;
}
//两个指针开始向中间移动
while(i<j){
sum =nums[k]+nums[i]+nums[j];
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
// while(i<j&&(sum>0||nums[j]==nums[j-1])) j--;
// while(i<j&&(sum<0||nums[i]==nums[i+1])) i++;
if(sum < 0){
i++;
} else if (sum > 0) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
j--;
} else {
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
//记住Arrays.asList
res.add(Arrays.asList(nums[k], nums[i], nums[j]));
//这块要用while而不是if,跳过所有重复的i和j
while(i < j && nums[i] == nums[i+1]) i++;
while(i < j && nums[j] == nums[j-1]) j--;
// 找到答案时,双指针同时收缩
i++;
j--;
}
}
//不要忘了k++
k++;
}
return res;
}
}