最长上升子序列

本文介绍了两种求解最长上升子序列问题的算法实现:动态规划和贪心加二分搜索。动态规划方法通过比较序列中元素的大小关系,更新状态数组以记录最长上升子序列的长度;贪心加二分搜索方法则利用了二分查找优化,适用于大规模数据处理,提高了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最长上升子序列模板

动态规划

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>

using namespace std;

int num[100000 + 10];
int dp[100000 + 10];

int main()
{
	int n;
	scanf("%d", &n);
	for(int i = 0; i < n; i ++) {
		scanf("%d", &num[i]);
	}
	int ans = 0;
	for(int i = 0; i < n; i ++) {
		dp[i] = 1;
		for(int j = 0; j < i; j ++) {
			if(num[j] <= num[i]) {
				dp[i] = max(dp[i], dp[j] + 1);
			}
		}
		ans = max(ans, dp[i]);
	}
	printf("%d\n", ans);
	return 0;
}

贪心+二分

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>

using namespace std;

int arr[100000 + 10];
int ans[100000 + 10];
int len;

int binary_search(int x) {
	int l = 0, r = len, mid;
	while(l < r) {
		mid = l + r >> 1;
		if(ans[mid] >= arr[x]) r = mid;
		else l = mid + 1;
	}
	return l;
}

int main()
{
	int n;
	scanf("%d", &n);
	for(int i = 0; i < n; i ++) {
		scanf("%d", &arr[i]);
	}
	ans[0] = arr[0];
	len = 0;
	for(int i = 1; i < n; i ++) {
		if(arr[i] > ans[len]) ans[++ len] = arr[i];
		else {
			int pos = binary_search(i);
			ans[pos] = min(ans[pos], arr[i]);
		}
	}
	printf("%d", len + 1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值