LIS问题
acwing题库
##最长上升子序列
https://www.acwing.com/problem/content/897/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int n;
int a[N],f[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
f[i]=1;//只有a[i]一个数
for(int j=1;j<i;j++)
if(a[j]<a[i])
f[i]=max(f[i],f[j]+1);
}
int res=0;
for(int i=1;i<=n;i++)res=max(res,f[i]);
printf("%d", res);
return 0;
}
输出具体子序列
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int n;
int a[N],f[N],g[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
f[i]=1;//只有a[i]一个数
g[i]=0;
for(int j=1;j<i;j++)
if(a[j]<a[i])
if(f[i]<f[j]+1){
f[i]=f[j]+1;
g[i]=j;
}
}
int k=1;
for(int i=1;i<=n;i++)
if(f[k]<f[i])
k=i;
printf("%d\n", f[k]);
for(int i=0,len=f[k];i<len;i++){
printf("%d ",a[k]);
k=g[k];
}
return 0;
}
##最长上升子序列2
https://www.acwing.com/problem/content/898/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+100;
int n;
int a[N];
int q[N];//存以下标为长度的上升子序列的最后一个数
int main(){
scanf("%d", &n);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
int len=0;
q[0]=-2e9;//保证小于某个数的数一定存在
for(int i=0;i<n;i++){
int l=0,r=len;//巧妙的二分
while(l<r){
int mid=l+r+1>>1;
if(q[mid]<a[i])l=mid;
else r=mid-1;
}
len=max(len,r+1);
q[r+1]=a[i];
}
printf("%d",len);
return 0;
}
##最长公共子序列
https://www.acwing.com/problem/content/899/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int n,m;
char a[N],b[N];
int f[N][N];
int main(){
scanf("%d%d",&n,&m);
scanf("%s%s",a+1,b+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
f[i][j]=max(f[i-1][j],f[i][j-1]);
if(a[i]==b[j])f[i][j]=max(f[i][j],f[i-1][j-1]+1);
}
printf("%d", f[n][m]);
return 0;
}
##怪盗基德的滑翔翼
https://www.acwing.com/problem/content/1019/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//转化为双向的lis问题
const int N=110;
int n;
int a[N],f[N];
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
//正向求解lis问题
int res=0;
for(int i=1;i<=n;i++){
f[i]=1;
for(int j=1;j<i;j++)
if(a[i]>a[j])
f[i]=max(f[i], f[j]+1);
res=max(res,f[i]);
}
//由于是全局最小值,res不需要做变化
//反向求解
for(int i=n;i;i--){
f[i]=1;
for(int j=n;j>i;j--)
if(a[i]>a[j])
f[i]=max(f[i],f[j]+1);
res=max(res,f[i]);
}
printf("%d\n",res);
}
return 0;
}
##登山
https://www.acwing.com/problem/content/1016/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//又以1017怪盗基德的滑翔翼为基础进一步的拓展
//集合可以按中间最高峰a[i]划分
const int N=1010;
int n;
int a[N];
int f[N],g[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
f[i]=1;
for(int j=1;j<i;j++)
if(a[i]>a[j])
f[i]=max(f[i],f[j]+1);
}
for(int i=n;i;i--){
g[i]=1;
for(int j=n;j>i;j--)
if(a[i]>a[j])
g[i]=max(g[i],g[j]+1);
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[i]+g[i]-1);
printf("%d",res);
return 0;
}
##合唱队形
https://www.acwing.com/problem/content/484/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//和登山一模一样
const int N=110;
int n;
int a[N];
int f[N],g[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
f[i]=1;
for(int j=1;j<i;j++)
if(a[i]>a[j])
f[i]=max(f[i],f[j]+1);
}
for(int i=n;i;i--){
g[i]=1;
for(int j=n;j>i;j--)
if(a[i]>a[j])
g[i]=max(g[i],g[j]+1);
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[i]+g[i]-1);
printf("%d",n-res);//就变了这里
return 0;
}
##友好城市
https://www.acwing.com/problem/content/1014/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
typedef pair<int, int>pll;
const int N=5010;
int n;
pll q[N];
int f[N];
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d%d",&q[i].first,&q[i].second);
sort(q,q+n);//相当于给了一个新下标first,下标存的值是second
//变为lis问题,second的值不能交叉,也就是要最长上升子序列
int res=0;
for(int i=0;i<n;i++){
f[i]=1;
for(int j=0;j<i;j++)
if(q[i].second>q[j].second)
f[i]=max(f[i],f[j]+1);
res=max(res,f[i]);
}
printf("%d",res);
return 0;
}
##最大上升子序列和
https://www.acwing.com/problem/content/1018/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//集合:所有以a[i]结尾的上升子序列
//属性:每一个子序列和的最大值
//状态计算:如下
const int N=1010;
int n;
int a[N],f[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
f[i]=a[i];
for(int j=1;j<=i;j++)
if(a[j]<a[i])
f[i]=max(f[i], f[j]+a[i]);
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[i]);
printf("%d",res);
return 0;
}
##拦截导弹
https://www.acwing.com/problem/content/1012/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//第一问:最长不上升子序列
//第二问:采用贪心的思路
// 从前到后遍历每一项
// 选择1:接在现有的某个子序列之后/放在结尾大于等于它的最小子序列后面
// 选择2:创建一个新系统/所有子序列结尾都小于当前数
// 争取让剩下子序列结尾的数尽可能大
//证明:由当前操作可以得到一组可行解,ans<=cnt
// 假设最优解对应方案和当前方案不同,则我们可以找到第一个数,其接在结尾大于等于它的非最小子序列后
// 我们可以将其调整到结尾大于等于它的最小子序列后面,
// 且没有增加序列的个数,接着重复此步骤,我们可以将最优解调整成当前方案解,调整的次数是有限的
// 可以认为cnt<=ans, 得证
//我们可以惊奇的发现,这个答案和求最长上升子序列的贪心过程一样,答案也一样
//着这两个问题是对偶问题
//反链定理 dilworth定理
#include<sstream>
const int N=1010;
int n;
int h[N],f[N],g[N];
int main(){
string line;
getline(cin, line);
stringstream ssin(line);
while(ssin>>h[n])n++;
int res=0,cnt=0;
for(int i=0;i<n;i++){
f[i]=1;
for(int j=0;j<i;j++)
if(h[i]<=h[j])
f[i]=max(f[i], f[j]+1);
res=max(res,f[i]);
}
cout<<res<<endl;
for(int i=0;i<n;i++){
int k=0;
while(k<cnt&&g[k]<h[i])k++;
g[k]=h[i];
if(k>=cnt)cnt++;
}
cout<<cnt<<endl;
return 0;
}
##导弹防御系统
https://www.acwing.com/problem/content/189/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//爆搜
const int N=55;
int n;
int q[N];
int up[N],down[N];
int ans;
void dfs(int u,int su, int sd){
if(su+sd>=ans)return;
if(u==n){
ans=su+sd;
return;
}
//将当前数放到上升子序列中
int k=0;
while(k<su&&up[k]>=q[u])k++;//找到一个结尾小于当前数的最小子序列
int t=up[k];//备份一下当前末尾的,方便恢复
up[k]=q[u];
if(k<su)dfs(u+1, su, sd);//不开新组
else dfs(u+1, su+1, sd);
up[k]=t;
//将当前数放入下降子序列中
k=0;
while(k<sd&&down[k]<=q[u])k++;
t=down[k];
down[k]=q[u];
if(k<sd)dfs(u+1, su, sd);
else dfs(u+1, su, sd+1);
down[k]=t;
}
int main(){
while(cin>>n, n){
for(int i=0;i<n;i++)cin>>q[i];
ans=n;
dfs(0,0,0);
cout<<ans<<endl;
}
return 0;
}
##最长公共上升子序列
https://www.acwing.com/problem/content/274/
----c++版
#include<iostream>
#include<algorithm>
using namespace std;
//集合:f[i,j]所有由第一个序列的前i个字母,第二个人序列的前j个字母构成,且以b[j]结尾的公共上升子序列
//属性:max
//计算:
const int N=3010;
int n;
int a[N],b[N];
int f[N][N];
int main(){
scanf("%d", &n);
for(int i=1;i<=n;i++)scanf("%d", &a[i]);
for(int j=1;j<=n;j++)scanf("%d", &b[j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
f[i][j]=f[i-1][j];//先等于右半边
if(a[i]==b[j]){
f[i][j]=1;
for(int k=1;k<j;k++)
if(b[k]<b[j])
f[i][j]=max(f[i][j], f[i][k]+1);
}
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[n][i]);
printf("%d", res);
return 0;
}
优化掉一层循环
#include<iostream>
#include<algorithm>
using namespace std;
//集合:f[i,j]所有由第一个序列的前i个字母,第二个人序列的前j个字母构成,且以b[j]结尾的公共上升子序列
//属性:max
//计算:
const int N=3010;
int n;
int a[N],b[N];
int f[N][N];
int g[N][N];
int main(){
scanf("%d", &n);
for(int i=1;i<=n;i++)scanf("%d", &a[i]);
for(int j=1;j<=n;j++)scanf("%d", &b[j]);
for(int i=1;i<=n;i++){
g[i][0]=1;
for(int j=1;j<=n;j++){
f[i][j]=f[i-1][j];//先等于右半边
if(a[i]==b[j])f[i][j]=max(f[i][j], g[i][j-1]);
g[i][j]=g[i][j-1];
if(a[i]>b[j])g[i][j]=max(g[i][j], f[i][j]+1);
}
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[n][i]);
printf("%d", res);
return 0;
}
不超记忆的内存
#include<iostream>
#include<algorithm>
using namespace std;
//集合:f[i,j]所有由第一个序列的前i个字母,第二个人序列的前j个字母构成,且以b[j]结尾的公共上升子序列
//属性:max
//计算:
const int N=3010;
int n;
int a[N],b[N];
int f[N][N];
int main(){
scanf("%d", &n);
for(int i=1;i<=n;i++)scanf("%d", &a[i]);
for(int j=1;j<=n;j++)scanf("%d", &b[j]);
for(int i=1;i<=n;i++){
int maxv=1;
for(int j=1;j<=n;j++){
f[i][j]=f[i-1][j];//先等于右半边
if(a[i]==b[j])f[i][j]=max(f[i][j], maxv);
if(a[i]>b[j])maxv=max(maxv, f[i][j]+1);
}
}
int res=0;
for(int i=1;i<=n;i++)res=max(res, f[n][i]);
printf("%d", res);
return 0;
}