题意:
维护一个有序数列{An},有三种操作:
1、add x 添加一个元素x。
2、del x 删除一个元素x。
3、求数列中下标 i%5 = 3的值的和。
解析:
由于线段树中不支持添加、删除操作,所以题解用的是用离线做法。
我们来看它是如何解决添加、删除的问题的。
首先将所有出现过的数记录下来,然后排序去重,最后根据去重结果建树,然后每个操作数都会对应线段树中的一个点。遇到添加、删除操作的时候,只要把那个节点的值改变,然后将它对下标的影响处理好就可以。
离散化后利用线段树,每个节点存储这个节点区间中以i为开始,每隔4位的和。比如:sumv[o][1~5]表示在域o以第1…5个数为起点的相隔4个数总和比如 1 2 3 4 5 6 7 8 9 10 11,sumv[o][1] = {1, 6, 11}
每次就维护sumv[o][1~5]节点的值。
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ls o*2
#define rs o*2+1
using namespace std;
typedef __int64 ll;
const int N = 1e5 + 10;
char cmd[N][5];
int len[N << 2], num[N], st[N];
ll sumv[N << 2][6];
void maintain(int o) { //维护线段树的左右子树
len[o] = len[ls] + len[rs];
int rp = 5 - len[ls]%5; //计算右边开始的位置
for(int i = 0; i < 5; i++) {
sumv[o][i] = sumv[ls][i] + sumv[rs][(rp+i)%5];
}
}
int p;
void modify(int o, int L, int R, int ch) {
if(L == R) {
len[o] += ch;
sumv[o][1] += ch * st[p-1];
return ;
}
int M = (L + R)/2;
if(p <= M) modify(ls, L, M, ch);
else if(p > M) modify(rs, M+1, R, ch);
maintain(o);
}
int main() {
int n;
while(~scanf("%d", &n)) {
int cnt = 0;
for(int i = 1; i <= n; i++) {
scanf("%s", cmd[i]);
if(cmd[i][0] != 's') {
scanf("%d", &num[i]);
st[cnt++] = num[i];
}
}
sort(st, st + cnt);
cnt = unique(st, st+cnt) - st;
//init
memset(len, 0, sizeof(len));
memset(sumv, 0, sizeof(sumv));
for(int i = 1; i <= n; i++) {
if(cmd[i][0] == 'a') {
p = lower_bound(st, st+cnt, num[i]) - st + 1;
modify(1, 1, cnt, 1);
}else if(cmd[i][0] == 'd') {
p = lower_bound(st, st+cnt, num[i]) - st + 1;
modify(1, 1, cnt,-1);
}else {
printf("%I64d\n", sumv[1][3]);
}
}
}
return 0;
}
还有一直二分的做法,用vector来实现。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef __int64 ll;
const int INF = 0x3f3f3f3f;
vector<int> vec;
char cmd[5];
int main() {
int n, num;
vector<int>::iterator it;
while(~scanf("%d", &n)) {
vec.clear();
for(int i = 1; i <= n; i++) {
scanf("%s", cmd);
if(cmd[0] == 'a') {
scanf("%d", &num);
it = lower_bound(vec.begin(), vec.end(), num);
vec.insert(it, num);
}else if(cmd[0] == 'd') {
scanf("%d", &num);
it = lower_bound(vec.begin(), vec.end(), num);
vec.erase(it);
}else {
ll ans = 0;
for(int i = 2; i < vec.size(); i+=5) {
ans += vec[i];
}
printf("%I64d\n", ans);
}
}
}
return 0;
}