解析:
先利用RMQ求LCA的方法,求出每个节点的最值,让后利用线段树来维护每个区间上面的LCA就可以了。思路是比较简单的,可是比赛的时候不会LCA,所以没有做出来。
注意:
本题需要使用手动扩栈的方法不然会栈溢出。
AC代码
#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cstdlib>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
typedef long long ll;
const int MAXN = 300005;
int first[MAXN], node[MAXN*2], rmq[MAXN*2];
//node 表示dfs的欧拉序
//first 表示每个节点第一次出现在欧拉序中的位置
//rmq 表示深度
struct ST {
int dp[MAXN*2][20];//最小值对应的下标
void init(int n) {
for(int i = 1; i <= n; i++) dp[i][0] = i;
for(int j = 1; (1<<j) <= n; j++) {
for(int i = 1; i <= n - (1<<j)+1; i++) {
int a = dp[i][j-1];
int b = dp[i+(1<<(j-1))][j-1];
if(rmq[a] < rmq[b]) dp[i][j] = a;
else dp[i][j] = b;
}
}
}
int query(int L, int R) {
int len = (R-L+1), k = 0;
while((1<<(k+1)) <= len) k++;
int a = dp[L][k];
int b = dp[R-(1<<k)+1][k];
if(rmq[a] < rmq[b]) return a;
else return b;
}
} st;
int index;
vector<int> edge[MAXN];
void init(int n) {
for(int i = 0; i <= n; i++)
edge[i].clear();
}
void addEdge(int u, int v) {
edge[u].push_back(v);
}
void dfs(int u, int pre, int deep) {
node[++index] = u;
rmq[index] = deep;
first[u] = index;
for(int i = 0; i < edge[u].size(); i++) {
int v = edge[u][i];
if(v == pre) continue;
dfs(v, u, deep+1);
node[++index] = u;
rmq[index] = deep;
}
}
int queryLCA(int u, int v) {
int L = first[u], R = first[v];
if(L > R) swap(L, R);
return node[st.query(L, R)];
}
int root[MAXN<<2];
void build(int o, int L, int R) {
if(L == R) {
root[o] = L;
return ;
}
int M = (L+R)/2;
build(ls, L, M);
build(rs, M+1, R);
root[o] = queryLCA(root[ls], root[rs]);
}
int ql, qr;
int query(int o, int L, int R) {
if(ql <= L && R <= qr) {
return root[o];
}
int M = (L+R)/2, ret = -1;
if(ql <= M) ret = query(ls, L, M);
if(qr > M) {
if(ret == -1) ret = query(rs, M+1, R);
else ret = queryLCA(ret, query(rs, M+1, R));
}
return ret;
}
bool used[MAXN];
int main() {
//freopen("in.txt", "r", stdin);
int n, q;
while(scanf("%d", &n) != EOF) {
init(n);
memset(used, false, sizeof(used));
int u, v;
for(int i = 1; i <= n-1; i++) {
scanf("%d%d", &u, &v);
addEdge(u, v);
addEdge(v, u);
used[v] = true;
}
index = 0;
dfs(1, -1, 0);
st.init(n*2-1);
build(1, 1, n);
scanf("%d", &q);
while(q--) {
scanf("%d%d", &ql, &qr);
printf("%d\n", query(1, 1, n));
}
}
return 0;
}