hdu 5266(线段树+LCA)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5266

解题思路:

考虑dfs序,通过在简单的证明可知L~R的LCA为 L  ~ R  中dfs序较小的那个位置与dfs序较大的那个位置的LCA。因此只要通过st表处理L~R最大dfs序与最小dfs序的编号即可。 这里用线段树维护dfs序的最大和最小值。

#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;

const int maxn = 300005;
const int inf = 0x3f3f3f3f;
struct Edge
{
	int to,next;
}edge[maxn<<1];
struct Seg
{
	int l,r,Min,Max;
}tree[maxn<<2];
int n,q,cnt,tot,head[maxn];
int ver[maxn],R[maxn],first[maxn];
int dp[maxn<<1][20],minl,maxr;

void addedge(int u,int v)
{
	edge[cnt].to = v;
	edge[cnt].next = head[u];
	head[u] = cnt++;
}

void initRMQ()
{
	for(int i = 1; i <= tot; i++)
		dp[i][0] = i;
	for(int j = 1; (1 << j) <= tot; j++)
		for(int i = 1; i + (1 << j) - 1 <= tot; i++)
		{
			if(R[dp[i][j-1]] < R[dp[i+(1<<j-1)][j-1]])
				dp[i][j] = dp[i][j-1];
			else dp[i][j] = dp[i+(1<<j-1)][j-1];
		}
}

int findLCA(int l,int r)
{
	int k = (int)(log(r - l + 1.0) / log(2.0));
	if(R[dp[l][k]] < R[dp[r-(1<<k)+1][k]])
		return ver[dp[l][k]];
	return ver[dp[r-(1<<k)+1][k]];
}

void build(int rt,int l,int r)
{
	tree[rt].l = l, tree[rt].r = r;
	if(l == r)
	{
		tree[rt].Max = tree[rt].Min = first[l];
		return;
	}
	int mid = (l + r) >> 1;
	build(rt<<1,l,mid);
	build(rt<<1|1,mid+1,r);
	tree[rt].Max = max(tree[rt<<1].Max,tree[rt<<1|1].Max);
	tree[rt].Min = min(tree[rt<<1].Min,tree[rt<<1|1].Min);
}

void query(int rt,int l,int r)
{
	if(l <= tree[rt].l && tree[rt].r <= r)
	{
		minl = min(minl,tree[rt].Min);
		maxr = max(maxr,tree[rt].Max);
		return;
	}
	int mid = (tree[rt].l + tree[rt].r) >> 1;
	if(l <= mid) query(rt<<1,l,r);
	if(mid < r) query(rt<<1|1,l,r);
}

void dfs(int u,int fa,int depth)
{
	first[u] = ++tot;
	R[tot] = depth;
	ver[tot] = u;
	for(int i = head[u]; i != -1; i = edge[i].next)
	{
		int v = edge[i].to;
		if(v == fa) continue;
		dfs(v,u,depth+1);
		ver[++tot] = u;
		R[tot] = depth;
	}
}

int main()
{
	int u,v,l,r;
	while(scanf("%d",&n)!=EOF)
	{
		cnt = tot = 0;
		memset(head,-1,sizeof(head));
		for(int i = 1; i < n; i++)
		{
			scanf("%d%d",&u,&v);
			addedge(u,v);
			addedge(v,u);
		}
		dfs(1,-1,0);
		build(1,1,n);
		initRMQ();
		scanf("%d",&q);
		while(q--)
		{
			scanf("%d%d",&l,&r);
			maxr = -1,minl = inf;
			query(1,l,r);
			int lca = findLCA(minl,maxr);
			printf("%d\n",lca);
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值