Python并发编程基础

多线程并发

Python的多线程并发是基于threading模块实现的,其核心原理是利用线程切换技术来实现CPU级别的并发执行。这种并发执行并不等同于多CPU的并行操作,而是在单个CPU上通过快速切换线程来模拟同时处理多个任务的效果。

示范

import threading

def print_numbers():
    for i in range(10):
        print(i)

def print_letters():
    for letter in 'asdfghjkl':
        print(letter)

# 创建两个线程
t1 = threading.Thread(target=print_numbers)
t2 = threading.Thread(target=print_letters)

# 启动线程
t1.start()
t2.start()

# 等待线程执行完毕
t1.join()
t2.join()

join() 解释

join() 在多线程编程中,是一个用来等待线程终止的方法

join()方法是用来阻塞主线程,直到目标线程执行完毕。当调用一个线程对象的join()方法时,主线程会被挂起,直到该线程对象完成其执行。这是为了确保主线程能在所有子线程完成后再继续执行,特别是在需要汇总或处理由多个线程产生的结果时尤为重要。

import threading
import time

def worker():
    print("Worker started")
    time.sleep(2)  # 模拟耗时操作
    print("Worker finished")

t = threading.Thread(target=worker)
t.start()

print("Main thread is waiting for worker thread to finish")
t.join()  # 主线程等待子线程执行完毕
print("Main thread continues after worker thread has finished")

创建了一个名为worker的线程,它会在2秒后打印"Worker finished"。然后我们在主线程中调用了t.join(),这会导致主线程阻塞,直到worker线程执行完毕。输出结果如下:

Worker started
Main thread is waiting for worker thread to finish
Worker finished
Main thread continues after worker thread has finished

多CPU并行

在计算机系统中,多个CPU同时执行不同的任务,以提高系统的处理能力和效率。在Python中,可以使用multiprocessing模块来实现多CPU并行,其实也叫多进程。

示范

import multiprocessing

def worker(num):
    """线程函数"""
    print('Worker:', num)

if __name__ == '__main__':
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        p.start()

多协程

多协程是指在一个线程中运行多个协程,它们通过任务的暂停和恢复来避免线程切换的开销,并且减少了锁的使用。

示范

import asyncio

async def worker(num):
    """协程函数"""
    print('Worker:', num)
    await asyncio.sleep(1)  # 模拟耗时操作

async def main():
    tasks = []
    for i in range(5):
        task = asyncio.create_task(worker(i))  # 创建协程任务
        tasks.append(task)
    await asyncio.gather(*tasks)  # 并发执行协程任务

if __name__ == '__main__':
    asyncio.run(main())

async def

async def 用于声明一个异步函数,即协程函数。这种函数的定义与普通函数类似,但包含 async 关键字,表示该函数是一个协程函数。

await

它用于挂起当前协程的执行,直到等待的操作完成。

await作用如下:

  • 暂停执行:当协程遇到 await 表达式时,它会暂停当前的执行,让出控制权给事件循环。这样,其他协程或任务可以继续执行,从而实现并发。
  • 恢复执行:当 await 后面的表达式(通常是另一个协程或异步操作)完成后,原协程会恢复执行。
import asyncio

async def fetch_data():
    print('Start fetching data...')
    await asyncio.sleep(2)
    print('Data fetched')

async def main():
    task = asyncio.create_task(fetch_data())
    print('Do something else...')
    await asyncio.sleep(1)
    print('Waiting for data...')
    await task
    print('Data received')

asyncio.run(main())

定义了两个协程函数:fetch_data 和 main。fetch_data 模拟了一个耗时的异步操作,它使用 await 来暂停当前协程的执行,等待2秒钟。而 main 则创建了一个任务(Task),并在等待1秒后使用 await 等待该任务完成。当任务完成后,main 会继续执行并打印出 "Data received"。

Do something else...
Start fetching data...
Waiting for data...
Data fetched
Data received

三者对比

多线程

优点

线程的创建和切换成本相对较低,对于I/O密集型任务,多线程可以在等待I/O操作时释放GIL,使得其他线程得以执行,从而提高程序的整体效率。

缺点

由于Python的GIL(全局解释器锁),多线程在CPU密集型任务中可能无法充分利用多核CPU的优势,因为同一时刻只有一个线程能够执行Python字节码。

场景

适合I/O密集型任务,如文件读写、网络请求等。

多进程

优点

每个进程拥有自己的内存空间和解释器,不受GIL的限制,可以充分利用多核CPU的优势,适合执行CPU密集型任务。

缺点

进程间的通信和数据共享相对复杂,且进程的创建和管理成本高于线程。

场景

适合CPU密集型任务,如大规模数值计算、图像处理等。

多协程

优点

协程是一种用户态的轻量级线程,它们通过事件循环来调度,可以在单线程内实现高并发。协程的创建和切换成本非常低,对于IO密集型任务尤其高效。

缺点

协程虽然轻量级,但仍然受限于GIL,对于CPU密集型任务,单独使用协程可能无法发挥最大效能。

场景

适合IO密集型任务,如Web服务器、异步数据处理等。

所以,对于IO密集型任务,可以考虑使用多线程或协程,而对于CPU密集型任务,则推荐使用多进程。在某些情况下,还可以将多进程与协程结合使用,以充分利用CPU资源并获得极高的性能。

理解GIL

Python的全局解释器锁(Global Interpreter Lock,GIL)是CPython解释器(Python的默认实现)中的一个技术细节。GIL是一个互斥锁,它确保了同一时刻只有一个线程能够执行Python字节码。这意味着在多线程环境下,即使有多个CPU核心,也只能有一个线程在执行Python代码。

  1. 对CPU密集型任务的影响

对于计算密集型任务,由于GIL的存在,多线程可能无法有效利用多核CPU,因为线程在执行时会互相竞争GIL,导致实际并行效果受限。

  1. 对IO密集型任务的影响

对于I/O密集型任务,GIL的影响相对较小。当一个线程等待I/O操作完成时(如文件读写、网络请求等),它会释放GIL,允许其他线程执行。这样,在I/O等待期间,CPU可以被其他线程有效利用。

  1. 解决方案

对于需要利用多核优势的计算密集型任务,推荐使用多进程(通过multiprocessing模块)而不是多线程。每个进程有自己的Python解释器和内存空间,因此不受GIL的限制。

  1. 与协程的关系

协程是在单个线程内部进行调度的轻量级线程。尽管协程可以在等待I/O时让出控制权,但由于它们运行在同一个线程内,仍然受到GIL的限制。然而,协程可以通过asyncio库提供的机制高效地处理高并发的I/O任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值