LeetCode-1341. 电影评分(中等)

表:Movies

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| title         | varchar |
+---------------+---------+
movie_id 是这个表的主键。
title 是电影的名字。
表:Users

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| name          | varchar |
+---------------+---------+
user_id 是表的主键。
表:Movie_Rating

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| user_id       | int     |
| rating        | int     |
| created_at    | date    |
+---------------+---------+
(movie_id, user_id) 是这个表的主键。
这个表包含用户在其评论中对电影的评分 rating 。
created_at 是用户的点评日期。 
 

请你编写一组 SQL 查询:

查找评论电影数量最多的用户名。
如果出现平局,返回字典序较小的用户名。

查找在 2020 年 2 月 平均评分最高 的电影名称。
如果出现平局,返回字典序较小的电影名称。

查询分两行返回,查询结果格式如下例所示:

Movies 表:
+-------------+--------------+
| movie_id    |  title       |
+-------------+--------------+
| 1           | Avengers     |
| 2           | Frozen 2     |
| 3           | Joker        |
+-------------+--------------+

Users 表:
+-------------+--------------+
| user_id     |  name        |
+-------------+--------------+
| 1           | Daniel       |
| 2           | Monica       |
| 3           | Maria        |
| 4           | James        |
+-------------+--------------+

Movie_Rating 表:
+-------------+--------------+--------------+-------------+
| movie_id    | user_id      | rating       | created_at  |
+-------------+--------------+--------------+-------------+
| 1           | 1            | 3            | 2020-01-12  |
| 1           | 2            | 4            | 2020-02-11  |
| 1           | 3            | 2            | 2020-02-12  |
| 1           | 4            | 1            | 2020-01-01  |
| 2           | 1            | 5            | 2020-02-17  | 
| 2           | 2            | 2            | 2020-02-01  | 
| 2           | 3            | 2            | 2020-03-01  |
| 3           | 1            | 3            | 2020-02-22  | 
| 3           | 2            | 4            | 2020-02-25  | 
+-------------+--------------+--------------+-------------+

Result 表:
+--------------+
| results      |
+--------------+
| Daniel       |
| Frozen 2     |
+--------------+

Daniel 和 Monica 都点评了 3 部电影("Avengers", "Frozen 2" 和 "Joker") 但是 Daniel 字典序比较小。
Frozen 2 和 Joker 在 2 月的评分都是 3.5,但是 Frozen 2 的字典序比较小。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/movie-rating
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

审题:

请你编写一组 SQL 查询:

查找评论电影数量最多的用户名。
如果出现平局,返回字典序较小的用户名。

查找在 2020 年 2 月 平均评分最高 的电影名称。
如果出现平局,返回字典序较小的电影名称。

思考:

查找评论电影次数最多的用户。

查找评分最高的电影。

解题:

1.对用户名称和用户姓名进行分组,求出 每个用户评论得电影数,用开窗函数求出第一名得那个,注意用平局得时候,按名称升序,
2.同理再求出电影名称
3.用union all并集

select w.name as results from (select t.user_id,t1.name,count(t.movie_id),dense_rank() 
over(order by count(t.movie_id) desc,t1.name asc) rk from MOVIE_RATING t
join Users t1
on t.user_id=t1.user_id
group by t.user_id,t1.name) w
where w.rk=1
union all
select q.title as results from (
select a.movie_id,b.title,avg(a.rating),dense_rank() over(order by avg(a.rating) 
desc,b.title asc) rk from MOVIE_RATING a
join movies b
on a.movie_id=b.movie_id
where to_char(a.created_at,'yyyy-mm')='2020-02'
group by a.movie_id,b.title) q
where q.rk=1

方法二:

(select name results
from Movie_Rating natural join Users
group by Users.user_id
order by count(*) desc, name asc
limit 1)
union
(select Movies.title results
from Movie_Rating natural join Movies 
where month(created_at)='2'
group by Movies.movie_id
order by avg(rating) desc, title asc
limit 1)

 知识点:

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值