傅立叶级数到傅立叶变换推导与理解

前言

在现实世界中,比如有一个较为复杂的函数 f ( x ) f(x) f(x),直接这个函数 f ( x ) f(x) f(x),非常复杂,而如果把它变成若干个简单的函数,分别计算这些简单的函数,这样一个复杂的函数就很容易求解。

那么傅里叶变换的含义主要的目的:就是将一个 f ( x ) f(x) f(x)
函数拆分成若干个 a ( x ) a(x) a(x)子函数之和。比如 f ( x ) = a 1 ( x ) + a 2 ( x ) + . . . + a n ( x ) f(x) = a_1(x) + a_2(x) + ... + a_n(x) f(x)=a1(x)+a2(x)+...+an(x),这里的 a 1 ( x ) a_1(x) a1(x) a 2 ( x ) a_2(x) a2(x)都是一些简单的函数。那么我们也就理解了傅里叶函数的意义,一个复杂的函数很难计算,如果能把它拆分成很多简单的子函数,分别计算子函数,然后再合起来,那么对待复杂的函数也不会害怕了。

所以傅里叶变换会在数字信号处理中会那么大放异彩,主要原因是,傅里叶函数不仅可以将复杂的信号函数 f ( x ) f(x) f(x)拆分成很多子函数,而且这些子函数还有自己明确的物理意义

级数与傅立叶级数

首先介绍一下级数的作用,如下图来自《高等数学下》,求一个圆的面积,那么采用切割规则的方法,逐渐逼近圆弧,切割次数的越大误差越小。当然你知道求圆的面积公式是啥样子了,然而在现实世界中,我们是没有现成的公式可以使用,就是采用这种逐步逼近的方式进行计算。

在这里插入图片描述

圆的面积 S ( x ) = a 1 ( x ) + a 2 ( x ) + . . . + a n ( x ) S(x) = a_1(x) + a_2(x) + ... + a_n(x) S(x)=a1(x)+a2(x)+...+an(x),分成 a 1 ( x ) a_1(x) a1(x) a 2 ( x ) a_2(x) a2(x) a n ( x ) a_n(x) an(x)面积,这些面积都是规则的面积,可以很容易求出,然后逐步逼近到真实的圆面积。

那么理解了级数的作用后,可能还会讨论级数的收敛性质啥的,然而在工程中我们面对东西不是那么复杂和抽象,所以这个不用讨论。我们在幂级数中结合普通的现实生活,一个函数 f ( x ) f(x) f(x)都是可以展开的,展开式如下: f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n f(x) = f(x_0) + f^{'}(x_0)(x - x_0) + ... + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n f(x)=f(x0)+f(x0)(xx0)+...+n!1f(n)(x0)(xx0)n

如果觉得把一个函数 f ( x ) f(x) f(x)展开成幂级数这种形式,当然了,我们还可以对一个函数展开成三角函数的形式,那么这种展开形式就是傅里叶级数。傅里叶级数在信号处理里,是一个必不可少的工具,既然是工具那么就不会太难。

比如一个信号 f ( x ) f(x) f(x)展开成 A 0 + ∑ n = 1 ∞ A n s i n ( n ω t + φ n ) A_0 + \sum_{n = 1}^{\infty}A_{n}sin(n{\omega}t + \varphi_n) A0+n=1Ansin(nωt+φn)
,那么对于这种展开,就成为傅里叶级数展开。通过三角变换公式,可以将该式子转为
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x) = \frac{a_0}{2} + \sum_{n = 1}^{\infty}(a_{n}cos{nx} + b_{n}sin{nx}) f(x)=2a0+n=1(ancosnx+bnsinnx)

值得注意的是信号 f ( x ) f(x) f(x)能够展开成这种形式的话,这个函数必须要是一个周期函数。查看如下图周期函数,是由这些函数
2 s i n ( x ) + 0.2 s i n ( 10 x ) + 0.1 s i n ( 100 x ) + 0.01 s i n ( 1000 x ) 2sin(x)+0.2sin(10x)+0.1sin(100x)+0.01sin(1000x) 2sin(x)+0.2sin(10x)+0.1sin(100x)+0.01sin(1000x) 组合相加而成的。
在这里插入图片描述
上面的讨论,我们知道了一个周期函数 f ( x ) f(x) f(x)能够通过傅里叶级数展开成若干个三角函数组合;还有一个令人兴奋的事情是,通过欧拉公式,可将三角函数转换成复数形式。欧拉公式如: c o s ( t ) = e i t + e − i t 2 cos(t) = \frac{e^{it} + e^{-it}}{2} cos(t)=2eit+eit s i n ( t ) = e i t − e − i t 2 i sin(t) = \frac{e^{it} - e^{-it}}{2i} sin(t)=2i

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值