傅里叶级数和傅里叶变换超详细推导(DR_CAN)
本文是在学习了DR_CAN老师的傅里叶变换讲解之后,根据自己的笔记整理得到的推导过程,记录下来。DR_CAN老师的课程链接在此:傅里叶变换——DR_CAN
Part I 三角函数的正交性
三角函数是具有正交性的。
三角函数的集合包括:
其中0可以视为
c
o
s
0
x
cos 0x
cos0x,1可以视为
s
i
n
0
x
sin0x
sin0x
在其中取任何两项积分,当n不等于m 时,结果必为0,即:
或者:
上述视为三角函数的正交性。
而当m=n时,举例:
Part Ⅱ周期为2 π \pi π的 f(x)的傅里叶展开
的傅里叶展开为:
或者:
(教科书上经常采用的)
其实二者是相同的,把式(1.1)展开第一项得到:
现在看到(1.2)和(1.3)的第一项还是不同的。
首先确定a0的表达形式,对 f(x)进行积分:
上式利用三角函数的正交性,得到了a0 的表达式:
当写成
a
0
2
\frac{a_0}{2}
2a0时,
a
0
=
1
π
∫
−
π
π
f
(
x
)
d
x
a_0=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x)dx
a0=π1∫−ππf(x)dx,此时(1.2)和(1.3)便可以表示成一样了。接下来的推导中,我们沿用教科书上的表达,即(1.2)。
其次我们确定 an的表达形式,对f(x)进行如下积分:
依据三角函数的正交性,可以得到上式的形式。当m=n 时的三角函数仍然属于不同的,根据三角函数的正交可知结果为0。
对于式(1.5),当m=n 时,
,则 an可以表示为:
类似地,可以确定bn的表达式:
对于式(1.7),当m=n 时,
,则
至此,我们可以对一个周期为
2
π
2\pi
2π 的函数 进行傅里叶展开,其形式为:
其中:
Part Ⅲ 周期为“2L”的函数展开为傅里叶级数
假设存在一函数满足:,利用换元法,令
,则
此时存在如下关系:
可以令:
,显然此时
。按照Part Ⅱ中的结论,可以将g(x) 展开成为:
其中a0 、 bn、an, 如PartⅡ中所示。
令 ,代入到 g(x)中去,得到:
则:
其中:
至此,我们便得到了周期为“2L”的函数展开的傅里叶级数的表达方式。
而在工程中是没有负数的,令
则 ,且:
其中:
Part Ⅳ 傅里叶级数的复数形式
在这里我们运用到相当具有影响力的欧拉公式:
将欧拉公式中关于正余弦的表示代入到(1.11)中,我们可以得到:
其中:
由Part Ⅲ中的系数表达式知:
上述
C
n
C_n
Cn的表示能用下列公式概述:
(1.12)和(1.13)式称为傅里叶级数的复指数表达形式。
Part Ⅴ 傅里叶变换
终于我们讲到了傅里叶变换。
前文我们讲到了傅里叶级数的复指数形式,形式重申如下。
我们可以将 f(t)这个函数认为是一种规则,其中的
C
n
C_n
Cn 才是真正定义了函数的那一部分。
上文我们讲的都是有周期的函数,假如这个周期为无穷,那么我们就得到了非周期的傅里叶级数,也就是傅里叶变换。在周期变为无穷时,存在下列一系列推导:
其中,前文中的 w现在写作w0 用以区分周期与非周期的函数,
Δ
w
\Delta w
Δw表示两个频率之间的距离。这表明前文中离散的过程则变为了连续的过程(需要认真理解)。
那么:
令:
则:
即得到了傅里叶变换(1.15)和傅里叶变换的逆变换(1.16)的表达式。
如果您觉得我写的不错,请给我一个免费的赞!谢谢