机器学习0806 多变量线性回归

本文探讨了多变量线性回归中的关键概念,包括代价函数的计算、使用梯度下降法进行参数优化,特别强调了特征缩放、学习率调整以及多项式回归的应用。通过实例演示如何设置合适的学习率并检测收敛,并介绍了多项式回归的变量代换方法。
摘要由CSDN通过智能技术生成

多变量线性回归

表示方法

 hypothesis:h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n}

代价函数

 (x_0=1)

梯度下降法

some tricks

特征缩放:各特征的取值范围相似 建议[-1,1]   或标准归一

学习率:if Gradient descent not working.Use smaller α.(α大,maybe 冲过最小值)

because For sufficiently small α,J(θ) should decrease on every iteration.

选取学习率的方法:0.001,0.003,0.01,0.03,0.1,0.3,1

判定梯度下降法收敛的方法:绘制J(θ)随迭代次数增加的曲线

多项式回归:采用变量代换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值