多变量线性回归
表示方法
代价函数
(x_0=1)
梯度下降法
some tricks
特征缩放:各特征的取值范围相似 建议[-1,1] 或标准归一
学习率:if Gradient descent not working.Use smaller α.(α大,maybe 冲过最小值)
because For sufficiently small α,J(θ) should decrease on every iteration.
选取学习率的方法:0.001,0.003,0.01,0.03,0.1,0.3,1
判定梯度下降法收敛的方法:绘制J(θ)随迭代次数增加的曲线
多项式回归:采用变量代换