239. 滑动窗口最大值
有点难度,稍后补一下
347. 前 K 个高频元素
思路:由于需要对元素出现频率进行统计并选出出现频率最高的前K个元素,因此想到利用Map中的key来存放元素,value存放对应元素出现的次数。而对于如何从一系列元素中找到前K个满足条件的元素,使用小顶堆。通过维护小顶堆中的K个元素便可以得到满足条件的结果。
public int[] topKFrequent2(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>();
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);
}
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
for(Map.Entry<Integer,Integer> entry:map.entrySet()){
if(pq.size()<k){
pq.add(new int[]{entry.getKey(),entry.getValue()});
}else{
if(entry.getValue()>pq.peek()[1]){
pq.poll();
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
}
}
int[] ans = new int[k];
for(int i=k-1;i>=0;i--){
ans[i] = pq.poll()[0];
}
return ans;
}
}
小结:值得注意的问题
- 对Java中有关于堆的相关类及其操作不够熟悉