大致题意是给出一个序列,有一种操作对序列中的数Vi 能够将Vi变为Vi-Vi+1,将Vi+1变为Vi+Vi+1。问最少进行多少次操作可以使序列的gcd大于1。
显然对于序列初始的gcd>1的,结果为0
对于初始gcd=1的情况需要做一些推导和证明。
对一次操作后新的gcd值d显然可以整除Vi-Vi+1和Vi+Vi+1.。那么可以知道d可以整除(Vi-Vi+1+Vi+Vi+1)和(Vi+Vi+1-(Vi-Vi+1))
即d可以整除2Vi和2Vi+1。同时,d整除Vj(j≠i,i+1)
那么d|gcd(V1,V2.....2Vi,2Vi+1,...Vn),d|2gcd(V1,.....Vn),即d整除2。那么d的最大值为2
要使gcd(V1,V2....Vn)的值大于1,就是让所有数变成偶数。
对于两个奇数进行一次操作,可以使两个数都变成偶数,一个奇数和一个偶数进行两次操作可以保证变成偶数。
那么我们用贪心的思想对连续的奇数进行处理,可以求出结果。
对于一段长度为len的连续的奇数,使它们全变为偶数的操作次数为(len/2)+2*(len&1)
代码来自官方题解,可以学习一下
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
int g = 0, cnt = 0, ans = 0, v;
while(n--){
cin >> v;
g = __gcd(g, v);
if (v&1) cnt++;
else{
ans += (cnt/2) + 2*(cnt&1);
cnt = 0;
}
}
ans += (cnt/2) + 2*(cnt&1);
cout << "YES" << endl;
if (g == 1)
cout << ans << endl;
else
cout << "0" << endl;
return 0;
}