codeforces 798C 数学

题目链接

大致题意是给出一个序列,有一种操作对序列中的数Vi 能够将Vi变为Vi-Vi+1,将Vi+1变为Vi+Vi+1。问最少进行多少次操作可以使序列的gcd大于1。

显然对于序列初始的gcd>1的,结果为0



对于初始gcd=1的情况需要做一些推导和证明。

对一次操作后新的gcd值d显然可以整除Vi-Vi+1和Vi+Vi+1.。那么可以知道d可以整除(Vi-Vi+1+Vi+Vi+1)和(Vi+Vi+1-(Vi-Vi+1))

即d可以整除2Vi和2Vi+1。同时,d整除Vj(j≠i,i+1)


那么d|gcd(V1,V2.....2Vi,2Vi+1,...Vn),d|2gcd(V1,.....Vn),即d整除2。那么d的最大值为2

要使gcd(V1,V2....Vn)的值大于1,就是让所有数变成偶数。

对于两个奇数进行一次操作,可以使两个数都变成偶数,一个奇数和一个偶数进行两次操作可以保证变成偶数。

那么我们用贪心的思想对连续的奇数进行处理,可以求出结果。

对于一段长度为len的连续的奇数,使它们全变为偶数的操作次数为(len/2)+2*(len&1)


代码来自官方题解,可以学习一下

#include<bits/stdc++.h>
using namespace std;


int main(){
    int n;
    cin >> n;
    int g = 0, cnt = 0, ans = 0, v;
    while(n--){
        cin >> v;
        g = __gcd(g, v);
        if (v&1) cnt++;
        else{
            ans += (cnt/2) + 2*(cnt&1);
            cnt = 0;
        }
    }
    ans += (cnt/2) + 2*(cnt&1);
    cout << "YES" << endl;
    if (g == 1)
        cout << ans << endl;
    else
        cout << "0" << endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值