模糊控制 之 模糊集,隶属函数,模糊关系

什么是模糊集呢?模糊集相对于普通集合而言,用隶属度用函数表示,普通集合用特征函数表示。当然,他俩都是在论域下的。

支集( S u p p A = { x ∣ x ∈ U , A ( x ) > 0 SuppA=\{x|x\in U,A(x)>0 SuppA={xxU,A(x)>0)是F集合(模糊集,边界不明显的)中所有大于零的元素组成的集合(毕竟F集也是包含0的)

核( K e r A = { x ∣ x ∈ U , A ( x ) = 1 KerA=\{x|x\in U,A(x)=1 KerA={xxU,A(x)=1)是F集合中所有等于1的元素组成的集合(普通集了)

如果支集不为空,则称为正规F集,注意幂集记作 ψ U \psi U ψU(实在打不出来,符号超级复杂)

特征函数就是在不在, A A A就是代表特征函数(它取值0~1之间)。

集合数积(乘上一个数 λ \lambda λ),输出0到1,这里 λ \lambda λ就是 [ 0 , 1 ] [0,1] [0,1](0到1之间某一个数),这样 λ A \lambda A λA就会限制到 [ 0 , λ ] [0,\lambda] [0,λ]
在这里插入图片描述
曲线是随便乱画的,凡是出现的曲线属于 S u p p A SuppA SuppA K e r A KerA KerA是最高的点。

经典集合的凸集
在这里插入图片描述
就是任意两点之间的连线上的所有点都在集合内,这就是凸集。
凸F集的定义是任何中间的隶属度( A ( x 3 ) ≥ m i n ( A ( x 1 ) , A ( x 2 ) ) , A ( x 3 ) = A ( x 1 ) ∧ A ( x 2 ) A(x_3)\ge min(A(x_1),A(x_2)),A(x_3)=A(x_1)\wedge A(x_2) A(x3)min(A(x1),A(x2)),A(x3)=A(x1)A(x2)),都要大于两边元素的隶属度中的小者(对就是小者),反应在曲线上是一个单峰A(x)函数
在这里插入图片描述
把实数域上的正规的,凸F集称为正规实模糊数,简称模糊数,即把以某个实数值为核的,凸F集称为F数(F数的本质是凸F集)。F数是一类特殊的F集合,是实数域上的F集合,它的性质和一般F集合完全相同,例如”20岁左右“(20就是A的核,20岁上下的隶属度都小于20岁的1,这是没问题的,这就是凸F集),”1.8m上下“,既可以用F集合表示,也可以用F数表示(例如F数2,F数3,F数20)。靠近程度用隶属度函数表示。隶属度函数输出的是隶属度,一个事实一般有多个隶属函数,这些隶属函数有一部分相交(例如青年,中年,老年)。
在这里插入图片描述
在这里插入图片描述

模糊集的扩充,例如基本概念扩充法(实际上也是隶属函数集的建立过程),例如: μ 极 大 ( u ) = μ 大 2 ( u ) \mu_{极大}(u)=\mu^2_{大}(u) μ(u)=μ2(u)(这实际上是另一个隶属函数了)。这个非常非常好用(老师说的)。注意这是小数,平方后变小了(保留两位就可以了,老师要求就这样) 。最后的隶属值会变小(用离散值举例)。至今为止,确定隶属函数的具体方法大多停留在经验,实践和实验数据上,经常使用的经验方法有以下几种:模糊统计法,二元对比排序法,专家经验法(教授还是吃香的。。。),神经网络法。无论哪种方法,都离不开人的主管参与和客观实际的检验。F集合完全由隶属函数所描述。

模糊函数(向量)的组合
设论域为 U U U,如果任何一个 x x x,有 A ( x ) = 1 A(x)=1 A(x)=1,则称A为论域 U U U上的全集(把年龄想象成离散的,一共1-100岁,这个隶属函数全是1,说明它表示全年龄,这就是这样的全集, A ( x ) ≡ 1 A(x)\equiv 1 A(x)1),同理,模糊空集为( A ( x ) ≡ 0 A(x)\equiv 0 A(x)0),F全集与F空集都属于经典集合。

模糊集合还有相等,
包含(均有 A ( x ) ≤ B ( x ) A(x)\le B(x) A(x)B(x)),
并集( C ( x ) = m a x [ A ( x ) , B ( x ) ] = A ( x ) ∨ B ( x ) C(x)=max[A(x),B(x)]=A(x)\vee B(x) C(x)=max[A(x),B(x)]=A(x)B(x)),
交集( C ( x ) = m i n [ A ( x ) , B ( x ) ] = A ( x ) ∧ B ( x ) C(x)=min[A(x),B(x)]=A(x)\wedge B(x) C(x)=min[A(x),B(x)]=A(x)B(x)),
补集( B ( x ) = 1 − A ( x ) B(x)=1-A(x) B(x)=1A(x))(实际上是函数(映射关系)的组合)
在这里插入图片描述
模糊关系就是两个模糊集之间的关系,也就是两个隶属函数之间的关系。模糊关系可以想象成不同厨师对一道菜色香味的评分。例如好吃与高分的关系,好吃与低分的关系。

模糊关系脱离模糊集而存在。是论域 U , V U,V U,V的关系,其实也是 U × V U\times V U×V的一个子集,即 R ⊆ U × V R\subseteq U\times V RU×V,对于其中的元素,如果 ( u , v ) ∈ R (u,v)\in R (u,v)R则称 u u u v v v R R R关系,否则称没有关系。
U → R V U\rightarrow^R V URV

所谓直积,就是这个:
A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } A\times B=\{(a,b)|a\in A,b\in B\} A×B={(a,b)aA,bB}

A A A B B B有关系 R R R,那也是 A × B A\times B A×B的子集了。序偶 ( a , b ) (a,b) (a,b)也会有隶属度为 μ R ( a , b ) \mu_R(a,b) μR(a,b)。它是一种新的模糊集。

序偶隶属度与普通隶属度的联系在于:
下面是一条模糊规则:
A → B 或 I F A ( u ) T H E N B ( v ) R = A × B = ∫ U × V m i n ( μ A ( u ) , μ B ( v ) ) / ( u , v ) A\rightarrow B\quad 或\quad IF\quad A(u) \quad THEN\quad B(v)\\ R=A\times B=\int_{U\times V}min(\mu_A(u),\mu_B(v))/(u,v) ABIFA(u)THENB(v)R=A×B=U×Vmin(μA(u),μB(v))/(u,v)

那么 R R R就是一个模糊矩阵。这时候算法就跟矩阵乘积一样了。笛卡尔乘积就是可以形成序偶。
接下来就是模糊关系与模糊关系的关系,合成:
R 1 ∘ R 2 μ R 1 ∘ R 2 ( u , w ) = ∨ { μ R 1 ( u , v ) ∧ μ R 2 ( v , w ) } R_1\circ R_2\\ \mu_{R_1\circ R_2}(u,w)=\vee\{\mu_{R_1}(u,v)\wedge \mu_{R_2}(v,w)\} R1R2μR1R2(u,w)={μR1(u,v)μR2(v,w)}

什么意思呢?这是正常的矩阵操作,取大取小跟矩阵一模一样。
R ( x , z ) = ( P ∘ Q ) ( x , z ) = { ( x , z ) ∣ ∃ y , ( x , y ) ∈ P , ( y , z ) ∈ Q } R(x,z)=(P\circ Q)(x,z)=\{(x,z)|\exists y,(x,y)\in P,(y,z)\in Q\} R(x,z)=(PQ)(x,z)={(x,z)y,(x,y)P,(y,z)Q}
什么叫模糊变换呢?就是一个模糊集(向量)跟一个序偶模糊集(矩阵)相乘,的出来一个向量,这是模糊变换(也是模糊合成的一种)。
A ∘ R = B A\circ R=B AR=B

但在色香味例子中, A A A只是一个权重, R R R是评价矩阵, B B B为总和评价矩阵,反正也是从一个关系转移到另一个关系了。另外最后还需要归一化。

下面说明几种清晰化方案:

  1. 模糊集合的截集,说白了,就是绩点。当然,如果连续的模糊集合无限分层,或者大量相差很小的经典集合求并,会成为模糊集合,反之,F集合的截集合可以使F集合转化为经典集合。截集的定义为:
    A λ = { x ∣ x ∈ U , A ( x ) ≥ λ } A_\lambda=\{x|x\in U,A(x)\ge\lambda\} Aλ={xxU,A(x)λ}
    A λ A_\lambda Aλ为A的一个 λ \lambda λ-截集, λ \lambda λ为阙值或置信水平。
    称集合 A λ = { x ∣ x ∈ U , A ( x ) > λ } A_\lambda=\{x|x\in U,A(x)>\lambda\} Aλ={xxU,A(x)>λ}为F集A的一个 λ \lambda λ-强截集。
    λ \lambda λ-截集与 λ \lambda λ-强截集都属于经典集合,利用数积的概念,任何一个模糊集合A可以看作无限多截集 A λ A_\lambda Aλ的并( A = ∪ λ ∈ [ 0 , 1 ] ( λ A λ ) A=\cup_{\lambda\in[0,1]}(\lambda A_\lambda) A=λ[0,1](λAλ)),这就是模糊集合的分解定理。该定理反映了F集合与经典集合的相互转化的关系。

  2. 模糊关系矩阵的截矩阵
    关于一个哨兵 λ \lambda λ,超过它就是1,没超过就是0,就这样。

模糊集合转化为数值,挺重要的。这种转换也称为模糊集合的清晰化或反模糊化。

  1. 面积中心(重心)法,面积中心法直观合理,言之有据,但计算略显复杂。
  2. 面积平分法,将隶属函数曲线面积平均分成两半,找这条线,用该值代表该模糊集合。直观合理,计算简便,在模糊控制器中使用较多。
  3. 最大隶属度法,通常模糊集合并非都是正规的和凸的,隶属函数也并非一条连续直线。因此,用隶属度最大点对应的元素值,代表这个模糊集合是一种简便方法,称为最大隶属度法。但往往有以偏概全之嫌。说不定在多处隶属度都取最大值。这样还要用最大隶属度平均值法,最大隶属度最大值法,最小值法,这就是清晰化。
  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值