理论讲解:帮助你快速懂得心算十进制转二进制------------一做就会一讲就废系列


一:熟记二进制几个特殊数字。


  • 问:为什么只记忆这几个数字?
  • 答:因为IP地址使用二进制表示,范围是从00000000.00000000.00000000.00000000到11111111.11111111.11111111.11111111,而0在二进制和十进制中都是0,而二进制的11111111在十进制中就是255,所以IP地址就是从0.0.0.0到255.255.255.255。
    十进制数字 二进制表示
    128 10000000
    192 11000000
    224 11100000
    240 11110000
    248 11111000
    252 11111100
    254 11111110
    255 11111111

十进制数字二进制表示
12810000000
19211000000
22411100000
24011110000
24811111000
25211111100
25411111110
25511111111

2.找到二进制的转换规律。


十进制数字规律
128128+ 2^6 (64)=192
192192+ 2^5 (32)=224
224224+ 2^4 (16)=240
240240+ 2^3 (8)=248
248248+ 2^2 (4)=252
252252+ 2^1 (2)=254
254254+ 2^0 (1)=255
255255是最后一个
  • 你会发现规律,从128–225,每两个数之间的差是递减的:64-32-16-8-4-2-1.把这个记住。

3.转二进制的规则理解。


上面的都记住之后,我们就可以开始理解这个算法了。

规则1:
我们把8位的二进制,从右向左,对应数字 2的0次方(2^0) 至 2的7次方(2^7)。
那么写出来就是:

1111 1111
128 64 32 16 8 4 2 1

这个不难理解,将这个记住就ok。

规则2:
将X(0<X<256)转二进制,我们开始计算(128.64.32.16.8.4.2.1)哪些加起来等于X。我们只算加起来等于X,我们不算减法等于X,因为减法需要向前借一位,个人感觉比较复杂,不建议。

规则3:
在转化二进制中,128.64.32.16.8.4.2.1,这八个数,用到哪个,哪个对应的位置就写1,其他为0.

4.举例消化,一举例你就明白了。


  • 先把规则1写下来,再开始看例子。

  • 例1:
    将 129转换成二进制。

  • 算法:在128.64.32.16.8.4.2.1中选择数字加起来等于129.我们发现128+1=129.
    我们知道128用二进制表示是 1000 0000(最开始就让你记忆的那些数字),再加上规则三,用到哪个数,哪个数就写1,因此我们得到答案是:1000 0001

  • 例2:
    将168转换成二进制。

  • 算法:我们发现128+40=168,32+8=40,所以就是128+32+8=168,所以我们把对应的数字写成1,因此我们得到的答案是: 1010 1000

  • 例3:
    将244转换成二进制。

  • 算法:我们发现我们已经知道240的二进制了:1111 0000,(之前记忆的),那么就是240+4=244.所以我们将240的二进制写出来,然后将4对应的位置写成1。因此我们得到的答案就是1111 0100.

  • 例4:
    将253转换成二进制。

  • 算法:我们已经知道252的二进制了:1111 1100(之前记忆的),那么就是252+1=253,所以我们将1对应的位置写成1,得到答案1111 1101

  • 例5:
    将80转成二进制。

  • 算法:64+16=80,将64和16这两位写成1,那么得到答案:0101 0000,最前面的0可以省略,所以我们的答案也可以写成101 0000

  • 总结:我们发现我们转换X成二进制的时候,我们都是挑选最靠近X的数,而且已经是我们记忆过的数字,然后再进行加法运算。所以,只要记住前面的特殊数字和三个法则,稍稍练习,你就完全可以心算二进制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值