正经学徒,佛系记录,不搞事情
一、什么是SnowFlake
twitter 用于生成id的算法
真面目:64位的二进制
1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
41位,用来记录时间戳(毫秒)。 41位可以表示241−1个数字, 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 241−1,减1是因为可表示的数值范围是从0开始算的,而不是1。 也就是说41位可以表示241−1个毫秒的值,转化成单位年则是(241−1)/(1000∗60∗60∗24∗365)=69年
10位,用来记录工作机器id。 可以部署在210=1024个节点,包括5位datacenterId和5位workerId 5位(bit)可以表示的最大正整数是25−1=31,即可以用0、1、2、3、…31这32个数字,来表示不同的datecenterId或workerId
12位,序列号,用来记录同毫秒内产生的不同id。 12位(bit)可以表示的最大正整数是212−1=4095,即可以用0、1、2、3、…4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号 SnowFlake可以保证: 所有生成的id按时间趋势递增 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)
二、为什么用SnowFlake
对于mysql而言,InnoDB为聚集主键类型的引擎,数据会按照主键进行排序,由于UUID的无序性,InnoDB会产生巨大的IO压力。InnoDB主键索引和数据存储位置相关(簇类索引),uuid 主键可能会引起数据位置频繁变动,严重影响性能,而雪花算法的高位使用的是时间,因此保证了生成的ID的大小是递增的,因此推荐使用雪花算法。
mysql的首要推荐当然还是使用ID自增,但是这种做法不适合使用在分布式上,同时也有人觉得只用递增会暴露业务信息(比如通过ID判断产品的销量)
三、怎么使用
注意:如下雪花算法最终生成的字符串长度是19位。使用时直接调用 getId 方法。
下面的工具类作用于单个服务节点,所以workerId和datacenterId都设为0。如果有多个机器节点则建议使用配置统一管理
/**
-
全局唯一id生成工具类
*/
public class SnowFlakeUtil {
private long workerId;
private long datacenterId;
private long sequence = 0L;
private long twepoch = 1288834974657L; // Thu, 04 Nov 2010 01:42:54 GMT 标记时间 用来计算偏移量,距离当前时间不同,得到的数据的位数也不同
private long workerIdBits = 5L; // 物理节点ID长度
private long datacenterIdBits = 5L; // 数据中心ID长度
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 最大支持机器节点数0~31,一共32个
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 最大支持数据中心节点数0~31,一共32个
private long sequenceBits = 12L; // 序列号12位, 4095,同毫秒内生成不同id的最大个数
private long workerIdShift = sequenceBits; // 机器节点左移12位
private long datacenterIdShift = sequenceBits + workerIdBits; // 数据中心节点左移17位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 时间毫秒数左移22位
private long sequenceMask = -1L ^ (-1L << sequenceBits); // 用于和当前时间戳做比较,以获取最新时间
private long lastTimestamp = -1L;//成员类,SnowFlakeUtil的实例对象的保存域
private static class IdGenHolder {
private static final SnowFlakeUtil instance = new SnowFlakeUtil();
}
//外部调用获取SnowFlakeUtil的实例对象,确保不可变
public static SnowFlakeUtil get(){
return IdGenHolder.instance;
}
//初始化构造,无参构造有参函数,默认节点都是0
public SnowFlakeUtil() {
this(0L, 0L);
}
//设置机器节点和数据中心节点数,都是 0-31
public SnowFlakeUtil(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(“worker Id can’t be greater than %d or less than 0”, maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format(“datacenter Id can’t be greater than %d or less than 0”, maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}//线程安全的id生成方法
@SuppressWarnings(“all”)
public synchronized long nextId() {
//获取当前毫秒数
long timestamp = timeGen();
//如果服务器时间有问题(时钟后退) 报错。
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
“Clock moved backwards. Refusing to generate id for %d milliseconds”, lastTimestamp - timestamp));
}
//如果上次生成时间和当前时间相同,在同一毫秒内
if (lastTimestamp == timestamp) {
//sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位
sequence = (sequence + 1) & sequenceMask;
//判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0
if (sequence == 0) {
//自旋等待到下一毫秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
//如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加,每个毫秒时间内,都是从0开始计数,最大4095
sequence = 0L;
}
lastTimestamp = timestamp;
// 最后按照规则拼出ID 64位
// 000000000000000000000000000000000000000000 00000 00000 000000000000
//1位固定整数 time datacenterId workerId sequence
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
}//比较当前时间和过去时间,防止时钟回退(机器问题),保证给的都是最新时间/最大时间
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}//获取当前的时间戳(毫秒)
protected long timeGen() {
return System.currentTimeMillis();
}/**
- 获取全局唯一编码
*/
public static String getId(){
Long id = SnowFlakeUtil.get().nextId();
return id.toString();
}
}
- 获取全局唯一编码