- 博客(7)
- 收藏
- 关注
原创 Baxter抓取物块——基于单应性矩阵(一)
最近在学习Baxter双臂机器人,做了一个简单的单臂物块抓取来作为起步阶段的成果。大体思路很简单:让手臂到达指定的起始位置,获取图像,找到物块的轮廓并计算单应性矩阵,再计算手臂实际需要移动的偏移量,最后控制手臂抵达目标位置。 程序中机械臂末端的姿态固定(抓手坐标系Z轴垂直于工作平面),致使Baxter手中的摄像头总是垂直于工作平面的。该程序中机器人视觉是二维的,深...
2018-09-08 10:59:12 2540 9
原创 骑砍2 游戏文件修改漫谈
骑砍2玩了一段时间,到后面内容重复度相当高。。所以想着自己整点乐子,但是又懒得整MOD,所以尝试修改游戏内部文件吧物品:物品的属性信息都在Mount & Blade II Bannerlord\Modules\SandBoxCore\ModuleData\spitems下,如weapons.xml。物品的翻译信息则在Mount & Blade II Bannerlord\Modules\SandBoxCore\ModuleData\Languages\CNs\std_spitems_
2021-05-22 22:11:48 10744 3
原创 在ROS中使用AB版Yolov4
参考:[1]https://github.com/gerkey/ros1_external_use[2]https://github.com/AlexeyAB/darknet 近期被提出的yolov4现在已经是一个比较热门的目标检测器了,虽然没有在网络的结构上进行突破性的创新,但是论文中组合了各种训练的trick,并对不同的组合进行了研究。整体来说是一个面向工业的目标检测器,在yolov3的基础上对检测的准确性进行了进一步的提升。 为了在ros系统中使用AlexeyAB原版的...
2020-07-27 15:52:55 993
原创 基于图像的火焰识别调研总结
转载请注明出处https://blog.csdn.net/Hey_chaoxia/article/details/85054870简单总结一下近期的调研结果:一、简介火焰的图像识别,主要围绕火焰的颜色特征、运动特征、几何特征与纹理特征来分析。这些特征可以用传统的算法计算,也可以交由卷积神经网络提取。本文将介绍火焰识别中上述四个特征的提取方法与决策方法,以及卷积神经网络方法。最后总结了基...
2018-12-29 16:33:45 20904 8
原创 Baxter抓取物块——基于单应性矩阵(二)
之前写了Baxter抓取物块的视觉部分(见一),接下来说一说剩下的、比较简单的模块。机械臂末端位姿获取: Baxter启动后会将自身各坐标系的变换关系发布到 '/tf' 话题中,我们只需要使用TF包(具体参考wiki)即可。定义的current_pose()函数是为了将矩阵转换为ROS的pose Message。class tf_listener():...
2018-09-14 21:42:07 1746 3
转载 利用神经网络逼近sin(x)函数
参考书目:智能控制技术(第二版)对于逼近正弦函数很多讲神经网络的书中都有涉及,算是比较简单的一个例子。对于这个网络来说,输入只有一个,那就是采样点(或者说时间点),输出显然只有一个,也就是一个与sin(x)较为相似的函数。在训练的过程中,sin(x)作为网络的期望值。激活函数选择常用的sigmoid函数,采样点的范围为[0,2π],在该范围内sin(x)仅有两个拐点,经过测试,隐层中含有3个神
2018-01-11 16:09:59 8094
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人