Machine Learning - Assignment 1

 Machine Learning                                        Assignment   1   (Linear   Algebra)   Instructor: Beilun Wang                             Name:Daiyang Luan                            ID:61518421 \begin{array}{|l|} \hline \text { Machine Learning } \\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textbf { Assignment 1 (Linear Algebra) }\\\\ \text {Instructor: Beilun Wang }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{Name:Daiyang Luan\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{ID:61518421}}\\\\ \hline \end{array}  Machine Learning                                     Assignment 1 (Linear Algebra) Instructor: Beilun Wang                             Name:Daiyang Luan                            ID:61518421

Problem 1


Let two vectors a = ( 1 , 2 , 3 ) T a=(1,2,3)^{\mathrm{T}} a=(1,2,3)T and b = ( − 8 , 1 , 2 ) T b=(-8,1,2)^{\mathrm{T}} b=(8,1,2)T.Answer the following equations:

(1) Compute the ℓ 2 \ell_{2} 2 norm of a a a and b b b

(2) Calculate the Euclidean distance between a a a and b b b

(3) Are a a a and b b b orthogonal?

Solution:

(1)The ℓ 2 \ell_{2} 2 norm of a a a is 14 \sqrt{14} 14 and the ℓ 2 \ell_{2} 2 norm of b b b is 69 \sqrt{69} 69 .

(2)The Euclidean distance between a a a and b b b is 83 \sqrt{83} 83 .

(3)As a T b = 1 × ( − 8 ) + 2 × 1 + 3 × 2 = 0 a^{\mathrm{T}}b=1\times (-8)+2\times 1+3\times 2=0 aTb=1×(8)+2×1+3×2=0, a a a and b b b is orthogonal.

Problem 2


Suppose A = [ 1 − 3 3 3 − 5 3 6 − 6 4 ] A=\left[\begin{array}{ccc}{1} & {-3} & {3} \\ {3} & {-5} & {3} \\ {6} & {-6} & {4}\end{array}\right] A=136356334, answer the following questions:

(1) Calculate A − 1 A^{-1} A1 and det ⁡ ( A ) \operatorname{det}(A) det(A).

(2) The Rank of A A A is?

(3) The trace of A A A is?

(4) Calculate A + A T A+A^{T} A+AT

(5) Is A A A an orthogonal matrix? State your reason.

(6) Calculate all the eigenvalue λ \lambda λ and corresponding eigenvectors of A A A.

(7) Diagonalize the matrix A A A.

(8) Calculate the ℓ 2 , 1 \ell_{2,1} 2,1 norm ∥ A ∥ 2 , 1 \|A\|_{2,1} A2,1 and the Frobenius norm (i.e. ℓ 2 \ell_{2} 2 norm) ∥ A ∥ F \|A\|_{F} AF

(9) Calculate the nuclear norm ∥ A ∥ ∗ \|A\|_* A and the spectral norm ∥ A ∥ 2 \|A\|_{2} A2

Solution:
(1) [ A I ] = [ 1 − 3 3 1 0 0 3 − 5 3 0 1 0 6 − 6 4 0 0 1 ] ⟶ r o w [ 1 0 0 − 1 / 8 − 3 / 8 3 / 8 0 1 0 3 / 8 − 7 / 8 3 / 8 0 0 1 3 / 4 − 3 / 4 1 / 4 ] = [ I A − 1 ] \left[\begin{array}{ccc} A &I\end{array}\right]=\left[\begin{array}{ccc}1&-3&3&1&0&0\\3&-5&3&0&1&0 \\6&-6&4&0&0&1\end{array}\right]\stackrel{row }{\longrightarrow}\left[\begin{array}{ccc}1&0&0&-1/8&-3/8&3/8\\0&1&0&3/8&-7/8&3/8 \\0&0&1&3/4&-3/4&1/4\end{array}\right]=\left[\begin{array}{ccc} I &A^{-1}\end{array}\right] [AI]=136356334100010001row1000100011/83/83/43/87/83/43/83/81/4=[IA1]
Hence, A − 1 = [ − 1 / 8 − 3 / 8 3 / 8 3 / 8 − 7 / 8 3 / 8 3 / 4 − 3 / 4 1 / 4 ] A^{-1}=\left[\begin{array}{ccc}-1/8&-3/8&3/8\\3/8&-7/8&3/8 \\3/4&-3/4&1/4\end{array}\right] A1=1/83/83/43/87/83/43/83/81/4
d e t ( A ) = ∣ 1 − 3 3 3 − 5 3 6 − 6 4 ∣ = ∣ 1 − 3 3 0 4 − 6 0 0 4 ∣ = 16 det(A)= \left|\begin{array}{cccc} 1 & -3 & 3 \\ 3 & -5 & 3\\ 6 & -6 & 4 \end{array}\right| =\left|\begin{array}{cccc} 1 & -3 & 3 \\ 0 & 4 & -6\\ 0 & 0 & 4 \end{array}\right|=16 det(A)=136356334=100340364=16

(2)As d e t ( A ) ≠ 0 det(A)\not=0 det(A)=0, A A A is a full-rank matrix. Thus, the rank of A A A is 3 3 3.

(3) t r ( A ) = 1 + ( − 5 ) + 4 = 0 tr(A)=1+(-5)+4=0 tr(A)=1+(5)+4=0. That is, the trace of A A A is 0 0 0.

(4) A + A T = [ 1 − 3 3 3 − 5 3 6 − 6 4 ] + [ 1 3 6 − 3 − 5 − 6 3 3 4 ] = [ 2 0 9 0 − 10 − 3 9 − 3 8 ] A+A^{T}=\left[\begin{array}{ccc}1&-3&3\\3&-5&3\\6&-6&4\end{array}\right]+\left[\begin{array}{ccc}1&3&6\\-3&-5&-6\\3&3&4\end{array}\right]=\left[\begin{array}{ccc}2&0&9\\0&-10&-3\\9&-3&8\end{array}\right] A+AT=136356334+133353664=2090103938

(5) A T A = [ 46 − 54 36 − 54 70 − 48 36 − 48 34 ] ≠ I A^{T}A=\left[\begin{array}{ccc}46&-54&36\\-54&70&-48\\36&-48&34\end{array}\right]\not=I ATA=465436547048364834=I, so A A A is not an orthogonal matrix.

(6)The characteristic determinant of A A A is ∣ λ − 1 3 − 3 − 3 λ + 5 − 3 − 6 6 λ − 4 ∣ = ( λ + 2 ) 2 ( λ − 4 ) . \left|\begin{array}{cccc} \lambda-1 & 3 & -3 \\ -3 & \lambda+5 & -3\\ -6 & 6 & \lambda-4 \end{array}\right|=(\lambda+2)^{2}(\lambda-4). λ1363λ+5633λ4=(λ+2)2(λ4). Thus, all the eigenvalues of A A A are λ 1 = λ 2 = − 2 , λ 3 = 4. \lambda_{1}=\lambda_{2}=-2,\lambda_{3}=4. λ1=λ2=2,λ3=4. Let A α i = λ i α i , i = 1 , 2 , 3 A\alpha_{i}=\lambda_{i}\alpha_{i},i=1,2,3 Aαi=λiαi,i=1,2,3. Then we have α 1 = [ 1 1 0 ] , α 2 = [ 0 1 1 ] , α 3 = [ 1 1 2 ] \alpha_{1}=\left[\begin{array}{ccc}1\\1\\0\end{array}\right],\alpha_{2}=\left[\begin{array}{ccc}0\\1\\1\end{array}\right],\alpha_{3}=\left[\begin{array}{ccc}1\\1\\2\end{array}\right] α1=110,α2=011,α3=112. α i ( i = 1 , 2 , 3 ) \alpha_{i}(i=1,2,3) αi(i=1,2,3) are the corresponding eigenvectors.

(7)The diagonal matrix corresponding to matrix A A A is [ − 2 0 0 0 − 2 0 0 0 4 ] \left[\begin{array}{cccc} -2 & 0 & 0 \\ 0 & -2 & 0\\ 0 &0 & 4 \end{array}\right] 200020004

(8)In order to calculate the ℓ 2 , 1 \ell_{2,1} 2,1 norm ∥ A ∥ 2 , 1 \|A\|_{2,1} A2,1, we first calculate the 2-norm of each row: 19 , 43 , 2 22 \sqrt{19},\sqrt{43},2\sqrt{22} 19 ,43 ,222 . Thus, ∥ A ∥ 2 , 1 = 19 + 43 + 2 22 \|A\|_{2,1}=\sqrt{19}+\sqrt{43}+2\sqrt{22} A2,1=19 +43 +222 .
∥ A ∥ F = ( ∑ i = 1 m ∑ j = 1 n ( a i j ) 2 ) 1 2 = 1 + 9 + 9 + 9 + 25 + 9 + 36 + 36 + 16 = 150 . \Vert A \Vert_F=\left({\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^n{(a_{ij})^2}}}\right)^{{\frac{1}{2}}}=\sqrt{1+9+9+9+25+9+36+36+16}=\sqrt{150}. AF=(i=1mj=1n(aij)2)21=1+9+9+9+25+9+36+36+16 =150 .

(9)The nuclear norm ∥ A ∥ ∗ \|A\|_* A is defined as the sum of all the singular values of matrix A A A. As is calculated above, A T A = [ 46 − 54 36 − 54 70 − 48 36 − 48 34 ] A^{T}A=\left[\begin{array}{ccc}46&-54&36\\-54&70&-48\\36&-48&34\end{array}\right] ATA=465436547048364834. Supposing the eigenvalues of A T A A^TA ATA are λ i , i = 1 , 2 , 3 \lambda_i, i=1,2,3 λi,i=1,2,3, we have ∣ λ I − A ∣ = 0 |\lambda I-A|=0 λIA=0.
That is,
∣ λ − 46 54 − 36 54 λ − 70 48 − 36 48 λ − 34 ∣ = 0 \left|{\begin{array}{l} \lambda-46&54&-36\\ 54&\lambda-70&48\\ -36&48&\lambda-34 \end{array}}\right|=0 λ46543654λ70483648λ34=0
Hence, we have λ 3 − 150 λ 2 + 648 λ − 256 = 0 \lambda^3-150\lambda^2+648\lambda-256=0 λ3150λ2+648λ256=0
The solution of the equation is:
λ 1 = 4 \lambda_1=4 λ1=4 λ 2 = 73 + 9 65 \lambda_2=73+9\sqrt{65} λ2=73+965 λ 3 = 73 − 9 65 \lambda_3=73-9\sqrt{65} λ3=73965
Thus, ∥ A ∥ ∗ = 2 + 73 + 9 65 + 73 − 9 65 ≈ 14.727922061357859 \|A\|_*=2+\sqrt{73+9\sqrt{65}}+\sqrt{73-9\sqrt{65}}\approx14.727922061357859 A=2+73+965 +73965 14.727922061357859.
∥ A ∥ 2 = m a x ( A T A ) = 73 + 9 65 ≈ 12.064838156174618 \|A\|_2=\sqrt{max(A^TA})=\sqrt{73+9\sqrt{65}}\approx 12.064838156174618 A2=max(ATA )=73+965 12.064838156174618

Problem 3​

Please give some proper steps to show how you get the answer. Let x = ( x 1 , x 2 , x 3 ) T x=\left(x_{1}, x_{2}, x_{3}\right)^{T} x=(x1,x2,x3)T and
{ 2 x 1 + 2 x 2 + 3 x 3 = 1 x 1 − x 2 = − 1 − x 1 + 2 x 2 + x 3 = 2 \left\{\begin{array}{l} 2 x_{1}+2 x_{2}+3 x_{3}=1 \\ x_{1}-x_{2}=-1 \\ -x_{1}+2 x_{2}+x_{3}=2 \end{array}\right. 2x1+2x2+3x3=1x1x2=1x1+2x2+x3=2
Answer the following questions:

(1) Solve the linear equations

(2) Write it into matrix form(i.e. A x = b A x=b Ax=b ) and we will use the same A A A and b b b in the following questions.

(3) The Rank of A A A is?

(4) Calculate A − 1 A^{-1} A1 and det ⁡ ( A ) \operatorname{det}(A) det(A)

(5) Use (4) to solve the linear equations

(6) Calculate the inner product and outer product of x x x and b b b.(i.e. ⟨ x , b ⟩ \langle x, b\rangle x,b and x ⊗ b x \otimes b xb )

(7) Calculate the ℓ 1 , ℓ 2 \ell_{1}, \ell_{2} 1,2 and ℓ ∞ \ell_{\infty} norm of b b b

(8) Suppose y = ( y 1 , y 2 , y 3 ) , y=\left(y_{1}, y_{2}, y_{3}\right), y=(y1,y2,y3), calculate y T A y , ∇ y y T A y y^{T} A y, \nabla_{y} y^{T} A y yTAy,yyTAy

(9) We add one linear equation − x 1 + 2 x 2 + x 3 = 2 -x_{1}+2 x_{2}+x_{3}=2 x1+2x2+x3=2 into linear equations above. Write it into matrix form(i.e. A 1 x = b ) \left.A_{1} x=b\right) A1x=b)

(10) The rank of A 1 A_{1} A1 is?

(11) Could these linear equations A 1 x = b A_{1} x=b A1x=b be solved? State reasons.

Solution:
(1)Solving the linear equations, we have: x 1 = − 1 , x 2 = 0 , x 3 = 1 x_1=-1, x_2=0, x_3=1 x1=1,x2=0,x3=1.

(2)The linear equation can be written into matrix form A x = b Ax=b Ax=b where
A = [ 2 2 3 1 − 1 0 − 1 2 1 ] A=\left[\begin{array}{l} 2&2&3 \\ 1&-1&0 \\ -1&2&1 \end{array}\right] A=211212301
and
b = [ 1 − 1 2 ] b=\left[\begin{array}{l} 1\\-1\\2 \end{array}\right] b=112

(3)The rank of A A A is 3.

(4) A − 1 = [ 1 − 4 − 3 1 − 5 − 3 − 1 6 4 ] A^{-1}=\left[\begin{array}{l} 1&-4&-3 \\ 1&-5&-3 \\ -1&6&4 \end{array}\right] A1=111456334
d e t ( A ) = − 1. det(A)=-1. det(A)=1.

(5) x = A − 1 b = [ 1 − 4 − 3 1 − 5 − 3 − 1 6 4 ] [ 1 − 1 2 ] = [ − 1 0 1 ] x=A^{-1}b=\left[\begin{array}{l} 1&-4&-3 \\ 1&-5&-3 \\ -1&6&4 \end{array}\right]\left[\begin{array}{l} 1\\-1\\2 \end{array}\right]=\left[\begin{array}{l} -1\\0\\1 \end{array}\right] x=A1b=111456334112=101
That is, x 1 = − 1 , x 2 = 0 , x 3 = 1 x_1=-1, x_2=0, x_3=1 x1=1,x2=0,x3=1, which is consistent with the result of question1.

(6) < x , b > = 1 , x ⨂ b = [ 1 3 1 ] T <x,b>=1,x\bigotimes b=\left[\begin{array}{l} 1&3&1 \end{array}\right]^T <x,b>=1,xb=[131]T

(7)The ℓ 1 \ell_1 1 norm of b b b is ∥ b ∥ 1 = 1 + 1 + 2 = 4 \|b\|_1=1+1+2=4 b1=1+1+2=4.
The ℓ 2 \ell_2 2 norm of b b b is ∥ b ∥ 2 = 1 + 1 + 4 = 6 \|b\|_2=\sqrt{1+1+4}=\sqrt{6} b2=1+1+4 =6 .
The ℓ ∞ \ell_\infty norm of b b b is ∥ b ∥ ∞ = m a x ( 1 , 1 , 2 ) = 2 \|b\|_\infty=max(1,1,2)=2 b=max(1,1,2)=2.

(8) y T A y = [ y 1 y 2 y 3 ] [ 2 2 3 1 − 1 0 − 1 2 1 ] [ y 1 y 2 y 3 ] = 2 y 1 2 − y 2 2 + y 3 2 + 3 y 1 y 2 + 2 y 2 y 3 + 2 y 1 y 3 y^TAy=\left[\begin{array}{l} y_1&y_2&y_3 \end{array}\right]\left[\begin{array}{l} 2&2&3 \\ 1&-1&0 \\ -1&2&1 \end{array}\right]\left[\begin{array}{l} y_1\\y_2\\y_3 \end{array}\right]=2y_1^2-y_2^2+y_3^2+3y_1y_2+2y_2y_3+2y_1y_3 yTAy=[y1y2y3]211212301y1y2y3=2y12y22+y32+3y1y2+2y2y3+2y1y3
∇ y y T A y = [ 4 y 1 + 3 y 2 + 2 y 3 3 y 1 − 2 y 2 + 2 y 3 2 y 1 + 2 y 2 + 2 y 3 ] \nabla_yy^TAy=\left[\begin{array}{l} 4y_1+3y_2+2y_3\\3y_1-2y_2+2y_3\\2y_1+2y_2+2y_3 \end{array}\right] yyTAy=4y1+3y2+2y33y12y2+2y32y1+2y2+2y3

(9)The new linear equation can be written into matrix form A 1 x = b 1 A_1x=b_1 A1x=b1 where
A 1 = [ 2 2 3 1 − 1 0 − 1 2 1 − 1 2 1 ] A_1=\left[\begin{array}{l} 2&2&3 \\ 1&-1&0 \\ -1&2&1\\-1&2&1 \end{array}\right] A1=211121223011
and
b 1 = [ 1 − 1 2 2 ] b_1=\left[\begin{array}{l} 1\\-1\\2\\2 \end{array}\right] b1=1122

(10)The rank of A 1 A_1 A1 is 3.

(11)Yes.
The number of variables is the same as the rank of the new matrix A 1 A_1 A1 and thus there is no more than one solution to the non homogeneous linear equations. Moreover, after diagonalizing the matrix A A A, we can see that after deleting the row whose elements are all zero, determinant of the new matrix is not zero. This indicates that a solution exists for these linear equations.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值