理论基础
随想录
种类:满二叉树、完全二叉树、二叉搜索树、平衡二叉搜索树
存储方式:链式、线式
深度优先搜索:前中后序遍历
广度优先搜索:层序遍历
二叉树的定义
递归遍历
- 确定递归函数的参数和返回值
- 确定终止条件
- 确定单层递归的逻辑
前序
class Solution {
public:
void travelsal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
vec.push_back(cur->val);
travelsal(cur->left,vec);
travelsal(cur->right,vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
travelsal(root,result);
return result;
}
};
中序
class Solution {
public:
void travelsal(TreeNode* cur, vector<int>& vec) {
if(cur == NULL) return;
travelsal(cur->left,vec);
vec.push_back(cur->val);
travelsal(cur->right,vec);
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
travelsal(root,result);
return result;
}
};
后序
class Solution {
public:
void travelsal(TreeNode* cur, vector<int>& vec) {
if(cur == NULL) return;
travelsal(cur->left,vec);
travelsal(cur->right,vec);
vec.push_back(cur->val);
}
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
travelsal(root,result);
return result;
}
};
迭代遍历
前序
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root == NULL) return result;
st.push(root);
while(!st.isempty()) {
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if(node->right) st.push(node->right);
if(node->left) st.push(node->left);
}
return result;
}
};
但是前序后序与中序的操作不一样,不是一个统一的思路,中序的节点访问顺序和处理顺序不一样
统一迭代
统一:把要处理的结点放入栈后,紧接着放入一个空指针作为标记
中序
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node->right) st.push(node->right); // 添加右节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node->left) st.push(node->left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.top(); // 重新取出栈中元素
st.pop();
result.push_back(node->val); // 加入到结果集
}
}
return result;
}
};
前序
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if(root != NULL) st.push(root);
while(!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if(node->right) st.push(node->right);
if(node->left) st.push(node->left);
st.push(node);
st.push(NULL);
}
else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};
后序
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if(root != NULL) st.push(root);
while(!st.empty()) {
TreeNode* node = st.top();
if(node != NULL) {
st.pop();
st.push(node);
st.push(NULL);
if(node->right) st.push(node->right);
if(node->left) st.push(node->left);
}
else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};