代码随想录算法训练营第十四天| 终于到二叉树了!

文章详细介绍了二叉树的各种遍历方法,包括递归和迭代的方式进行前序、中序和后序遍历。递归遍历通过定义终止条件和单层逻辑实现,而迭代遍历利用栈来模拟递归过程,特别地,对于中序遍历,需要使用空指针作为标记来调整节点的处理顺序。
摘要由CSDN通过智能技术生成

理论基础

随想录
种类:满二叉树、完全二叉树、二叉搜索树、平衡二叉搜索树
存储方式:链式、线式
深度优先搜索:前中后序遍历
广度优先搜索:层序遍历
二叉树的定义

递归遍历

  1. 确定递归函数的参数和返回值
  2. 确定终止条件
  3. 确定单层递归的逻辑

前序

class Solution {
public:
    void travelsal(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) return;
        vec.push_back(cur->val);
        travelsal(cur->left,vec);
        travelsal(cur->right,vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        
        vector<int> result;
        travelsal(root,result);
        return result;
    }
};

中序

class Solution {
public:
    void travelsal(TreeNode* cur, vector<int>& vec) {
        if(cur == NULL) return;
        travelsal(cur->left,vec);
        vec.push_back(cur->val);
        travelsal(cur->right,vec);
        
    }
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        travelsal(root,result);
        return result;
    }
};

后序

class Solution {
public:
    void travelsal(TreeNode* cur, vector<int>& vec) {
        if(cur == NULL) return;
        travelsal(cur->left,vec);
        travelsal(cur->right,vec);
        vec.push_back(cur->val);
    }
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        travelsal(root,result);
        return result;
    }
};

迭代遍历

前序

class Solution {
public:
   
    vector<int> preorderTraversal(TreeNode* root) {
        
        vector<int> result;
        

        stack<TreeNode*> st;

        if (root == NULL) return result;
        st.push(root);
        while(!st.isempty()) {
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if(node->right) st.push(node->right);
            if(node->left) st.push(node->left);
        }
        return result;
    }
};

但是前序后序与中序的操作不一样,不是一个统一的思路,中序的节点访问顺序和处理顺序不一样

统一迭代

统一:把要处理的结点放入栈后,紧接着放入一个空指针作为标记

中序

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node->right) st.push(node->right);  // 添加右节点(空节点不入栈)

                st.push(node);                          // 添加中节点
                st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。

                if (node->left) st.push(node->left);    // 添加左节点(空节点不入栈)
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.top();    // 重新取出栈中元素
                st.pop();
                result.push_back(node->val); // 加入到结果集
            }
        }
        return result;
    }
};

前序

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if(root != NULL) st.push(root);
        while(!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();

                if(node->right) st.push(node->right);
                if(node->left) st.push(node->left);

                st.push(node);
                st.push(NULL);
            } 
            else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

后序

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;

        if(root != NULL) st.push(root);
        while(!st.empty()) {
            TreeNode* node = st.top();
            if(node != NULL) {
                st.pop();
                
                st.push(node);
                st.push(NULL);

                if(node->right) st.push(node->right);
                if(node->left) st.push(node->left);
            }
            else {
                st.pop();

                node = st.top();
                st.pop();

                result.push_back(node->val);
            }
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值