530.二叉搜索树的最小绝对差
思路
遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。
代码
递归:
class Solution {
public:
vector<int> vec;
void travelsal(TreeNode* root){
if(root == NULL) return;
travelsal(root->left);
vec.push_back(root->val);
travelsal(root->right);
}
int getMinimumDifference(TreeNode* root) {
vec.clear();
travelsal(root);
if(vec.size() < 2) return 0;
int result = INT_MAX;
for (int i = 1; i < vec.size(); i++) {
result = min(result, vec[i]-vec[i-1]);
}
return result;
}
};
class Solution {
private:
int result = INT_MAX;
TreeNode* pre = NULL;
void travelsal(TreeNode* cur) {
if(cur == NULL) return;
travelsal(cur->left);
if(pre != NULL) {
result = min(result,(cur->val - pre->val));
}
pre = cur;
travelsal(cur->right);
}
public:
int getMinimumDifference(TreeNode* root) {
travelsal(root);
return result;
}
};
迭代
class Solution {
public:
int getMinimumDifference(TreeNode* root) {
stack<TreeNode*> st;
TreeNode* cur = root;
TreeNode* pre = NULL;
int result = INT_MAX;
while(cur!=NULL || !st.empty()) {
if(cur != NULL) {
st.push(cur);
cur = cur->left;
}
else {
cur = st.top();
st.pop();
if(pre != NULL) {
result = min(result, cur->val - pre->val);
}
pre = cur;
cur = cur->right;
}
}
return result;
}
};
总结
- 迭代法对我来说会更难记忆一些
- 遇到在二叉搜索树上求什么最值,求差值之类的,都要思考一下二叉搜索树可是有序的,要利用好这一特点。
501.二叉搜索树中的众数
思路
如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。有的同学可能可以想直接对map中的value排序,还真做不到,C++中如果使用std::map或者std::multimap可以对key排序,但不能对value排序。所以要把map转化数组即vector,再进行排序,当然vector里面放的也是pair<int, int>类型的数据,第一个int为元素,第二个int为出现频率。
是二叉搜索树:中序遍历有序,统计出现次数,当统计到的次数大于记录中的最大次数时,清空结果集,更新记录,更新结果集。当统计到的次数等于记录最大次数时,更新结果集。
代码
不是二叉搜索树:
class Solution {
private:
void searchBST(TreeNode* cur, unordered_map<int,int>& map){
if(cur == NULL) return;
map[cur->val] ++;
searchBST(cur->left,map);
searchBST(cur->right,map);
return;
}
bool static cmp(const pair<int,int>& a, const pair<int,int>& b) {
return a.second > b.second;
}
public:
vector<int> findMode(TreeNode* root) {
vector<int> result;
unordered_map<int, int> map;
if(root == NULL) return result;
searchBST(root,map);
vector<pair<int,int>> vec(map.begin(),map.end());
sort(vec.begin(),vec.end(),cmp);
result.push_back(vec[0].first);
for(int i = 1; i < vec.size(); i++) {
if(vec[i].second == vec[0].second) {
result.push_back(vec[i].first);
}
else break;
}
return result;
}
};
情况二:
class Solution {
private:
int maxCount = 0;
int count = 0;
TreeNode* pre = NULL;
vector<int> result;
void searchBST(TreeNode* cur){
if(cur == NULL) return;
searchBST(cur->left);
if(pre == NULL) {
count = 1;
}
else if(pre->val == cur->val) {
count++;
}
else {
count = 1;
}
pre = cur;
if(count == maxCount) {
result.push_back(cur->val);
}
if(count > maxCount) {
maxCount = count;
result.clear();
result.push_back(cur->val);
}
searchBST(cur->right);
return ;
}
public:
vector<int> findMode(TreeNode* root) {
count = 0;
maxCount = 0;
TreeNode* pre = NULL;
result.clear();
searchBST(root);
return result;
}
};
总结
sort
方法用自定义的比较方式:首先写一个cmp方法,sort(vec.begin(),vec.end(),cmp);
- 利用二叉搜索树的特点更高效
236. 二叉树的最近公共祖先
思路
代码随想录文章
在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)。
代码
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == p || root == q || root == NULL) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left == NULL && right != NULL) return right;
else if(left != NULL && right == NULL) return left;
else {
return NULL;
}
}
};
总结
-
求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。
-
在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。
-
要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。