数值计算方法第五章—曲线拟合的最小二乘法

曲线拟合的最小二乘法本文参考书为马东升著《数值计算方法》最小二乘法与插值法的区别:只需“逼近” f(x)f(x)f(x) ,而不用满足插值原则(即经过插值节点)最小二乘原理设 y=f(x)y=f(x)y=f(x) 在区间 [ a ,b ][\ a\ ,b\ ][ a ,b ] 上有定义,求 φ(x)\varphi(x)φ(x) ,使得 φ(xi)\varphi(x_i)φ(xi​) 与 f(xi)f(x_i)f(xi​) 的误差
摘要由CSDN通过智能技术生成

曲线拟合的最小二乘法

本文参考书为马东升著《数值计算方法》

最小二乘法

与插值法的区别:只需“逼近” f ( x ) f(x) f(x) ,而不用满足插值原则(即经过插值节点)

最小二乘原理

y = f ( x ) y=f(x) y=f(x) 在区间 [   a   , b   ] [\ a\ ,b\ ] [ a ,b ] 上有定义,求 φ ( x ) \varphi(x) φ(x) ,使得 φ ( x i ) \varphi(x_i) φ(xi) f ( x i ) f(x_i) f(xi)误差或者距离最小

  • 1-范数意义下的误差

    R 1 = ∑ i = 1 n ∣ φ ( x i ) − y i ∣ R_1=\sum\limits_{i=1}^n|\varphi(x_i)-y_i| R1=i=1nφ(xi)yi

  • ∞ \infty -范数意义下的误差

    R ∞ = max ⁡ 1 ≤ i ≤ n ∣ φ ( x i ) − y i ∣ R_{\infty}=\max\limits_{1\le i\le n}|\varphi(x_i)-y_i| R=1inmaxφ(xi)yi

  • 2-范数意义下的误差(均方误差)

    R 2 2 = ∑ i = 1 n ( φ ( x i ) − y i ) 2 R_2^2=\sum\limits_{i=1}^n(\varphi(x_i)-y_i)^2 R22=i=1n(φ(xi)yi)2

    均方误差达到极小构造拟合曲线的方法称为最小二乘法

  • 正则方程组

    系数矩阵为对称矩阵的方程组,称为正则方程组或法方程组

直线拟合

设已知数据点 ( x i , y i ) (x_i,y_i) (xi,yi) 分布大致为直线,构造拟合直线 y = a + b x y=a+bx y=a+bx ,则需使残差平方和
∑ i = 1 m [   y i − ( a + b x i ) ] 2 \sum\limits_{i=1}^m[\ y_i-(a+bx_i)]^2 i=1m[ yi(a+bxi)]2
为最小

计算时正则方程组为
( ∑ i = 1 m 1 ∑ i = 1 m x i ∑ i = 1 m x i ∑ i = 1 m x i 2 ) ( a b ) = ( ∑ i = 1 m y i ∑ i = 1 m x i y i ) \begin{pmatrix}{\sum\limits_{i=1}^m1}&{\sum\limits_{i=1}^mx_i}\\ {\sum\limits_{i=1}^mx_i}&{\sum\limits_{i=1}^mx_i^2}\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}=\begin{pmatrix}{\sum\limits_{i=1}^my_i}\\{\sum\limits_{i=1}^mx_iy_i}\end{pmatrix} i=1m1i=1mxii=1mxii=1mxi2(ab)=i=1myii=1mxiyi
如果有权值 ω i \omega_i ωi ,则在每一项乘以 ω i \omega_i ωi 即可,如下
( ∑ i = 1 m ω i ∑ i = 1 m ω i x i ∑ i = 1 m ω i x i ∑ i = 1 m ω i x i 2 ) ( a b ) = ( ∑ i = 1 m ω i y i

  • 10
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值