- 博客(540)
- 资源 (8)
- 收藏
- 关注
原创 宏集案例 | 守护价值百万的“算力核心”:AI服务器跨洋运输如何实现全程透明化?
AI服务器的单价高(如NVIDIA H200约400-600 万元),内置高价值GPU、显存等配件,海外运输存在不当开箱及盗窃风险,因此,需要通过实时监测确定异常,判断是否开箱,并且定位跟踪货物状态。面对精密且昂贵的AI服务器,传统的物理防护已无法完全满足市场需求,“数据驱动的运输安全”成为了新的行业标杆。借助宏集Tive的平台,企业可以及时发现运输风险、快速响应异常情况,从而降低货损、延误和合规风险,广泛应用于医药、冷链、生鲜、高价值设备等对运输条件要求较高的行业。近年来,全球AI服务器的需求暴增。
2026-01-23 16:01:56
493
原创 宏集干货 | 运输记录仪怎么选?赶紧收藏这份保姆级选型指南!
在为物流运输场景挑选运输监测记录仪时,承运商或制造商往往聚焦于终端客户要求的参数指标,而实际上对运输记录仪的传感感知能力、硬件参数指标和运输安全判定方面不甚了解。业主要求的指标可能与实际需要监测的货物特性相悖,完全依据给定指标选型记录仪往往不能做到真实的运输监测。小巧的机身和轻便的重量能够帮助现场人员轻松将记录仪安装于各类货物的不平整表面,例如电力设备中的避雷器、套管等等,轻松规避传统重型记录仪的安装难题。确认好需要记录的参数后,往往需要考虑的是数据证明的问题,这是决定采购成本和使用体验的关键分水岭。
2026-01-23 15:04:31
332
原创 艾体宝方案 | 提升企业反CEO欺诈能力:融合技术与培训的最佳实践
CEO欺诈是一种典型的社会工程学攻击。攻击者往往通过伪造邮件、电话指令或即时通讯信息假冒企业高管、财务人员或合作伙伴,诱导员工执行转账、购买礼品卡或泄露敏感信息等操作。一旦得手,资金会被迅速转移至境外,企业往往难以及时追回。欺骗性极强:攻击手段高度拟真,极难依靠传统安全工具拦截。影响范围广:目标从大型跨国企业到中小型公司均可能受害。损失巨大:单次攻击可造成数百万甚至上亿美元的损失。网络安全已成为企业稳健成长与数字化发展的基石。面对日益猖獗的CEO欺诈与BEC攻击,企业唯有提前防范,将。
2026-01-23 11:50:50
487
原创 艾体宝案例 | 90天拦截502封高危邮件,First Bank如何实现邮件安全全面可视化?
作为一家高速发展的美国银行,First Bank and Trust(以下简称 First Bank)深知,确保邮件通信的机密性至关重要,以避免数据泄露、监管处罚以及声誉受损的风险。“邮件是我们的主要沟通渠道,在大量敏感数据通过邮件传递的情况下,只要有一次成功的钓鱼攻击或误发邮件给未经授权的收件人,就可能引发严重后果。—— First Bank 信息安全官 Michael Weaver他指出,这些事件不仅会影响组织运营,还可能使客户面临身份盗用或金融欺诈的风险。
2026-01-23 11:32:00
697
原创 艾体宝洞察 | 多因素身份验证(MFA)并非“万能钥匙”:解析攻击路径与防护建议
多因素身份验证(Multi-Factor Authentication,简称MFA)是一种比“用户名+密码”更安全的登录方式。它要求用户在登录账户时,提供两种或以上不同类型的信息,用来证明“你就是你本人”。这个方法就像进门要两把钥匙:不仅要有门钥匙,还要有门禁卡,才能打开。你知道的东西(比如密码、验证码、PIN码)你拥有的东西(比如手机、U盾、动态令牌)你本人的特征(比如指纹、面部识别、声音)只要满足其中两个或以上,就能登录。
2026-01-23 11:13:30
675
原创 艾体宝洞察 | 理解生成式人工智能中的偏见:类型、原因和后果
1. 构建多样化、有代表性的训练数据 要减少生成式AI中的偏见,最基础的做法是创建和策划多样化且具有代表性的训练数据集。有针对性的外展、谨慎的数据抽样以及与领域专家的合作,可以帮助弥补常常导致AI输出中代表性不足和错误描述的差距。生成式AI的偏见,指的是生成式AI模型在产出信息时出现的系统性错误或扭曲,这可能导致不公平或歧视性的结果。当某些群体在生成式AI系统的输出中持续处于不利地位时,就会产生歧视性结果,例如,招聘工具根据带有性别或种族色彩的姓名筛选简历,或图像生成器产生对少数群体的刻板描绘。
2026-01-22 12:49:00
758
原创 艾体宝洞察 | 2025 年你需要了解的 58 个生成式人工智能统计数据
深度学习的进步,特别是Transformer模型的发展,使得像ChatGPT和Stable Diffusion这样的系统能够生成类人文本和逼真的图像。这些工具降低了非技术用户的使用门槛,扩大了AI采纳者的基础,并提高了日常工作流程的生产力。随着生成式AI的不断发展,各组织不仅在调整其运营方式,还在制定相应的政策,以应对强大内容生成工具带来的风险。3.到2032年,仅生成式AI的软件收入就可能产生2800亿美元,以42%的复合年增长率(CAGR)增长(Bloomberg Intelligence)。
2026-01-22 12:31:18
463
原创 艾体宝洞察 | 缓存策略深度解析:从内存缓存到 Redis 分布式缓存
缓存不是简单地把数据往内存里一放就完事,而是需要根据业务特点精心设计的系统工程。选择一个正确的缓存策略正是意味着应用程序在负载下能稳定运行和崩溃之间的差别。单体应用或简单场景:优先考虑进程内缓存分布式架构或复杂业务:选择 Redis 等分布式缓存混合使用:L1(进程内)+ L2(Redis)的多级缓存架构合理设置 TTL,平衡数据一致性和缓存效果实现完善的缓存更新和清理机制建立监控体系,持续优化缓存命中率考虑缓存失效的降级策略好的缓存策略往往比增加服务器更能解决性能问题。
2026-01-22 11:58:53
916
原创 艾体宝洞察 | 不止步于缓存 - Redis 多数据结构平台的演进与实践
总而言之,Redis 已经从简单的缓存演进为一个强大的数据平台,能够处理复杂的实时应用程序。凭借 18 种现代数据结构、跨节点的自动数据分片以及实时同步能力,Redis 为多组件架构提供了一个极具吸引力的替代方案。在如下场景,Redis 的优势尤为突出:实时分析与监控用户会话管理流式数据处理实时排行榜与竞赛系统核心在于,工程师要能够识别业务如何能够从 Redis 丰富的功能整合中受益。
2026-01-21 11:59:20
1062
2
原创 艾体宝方案 | Redis Caching 专题应用解决方案
Redis 已超越“单纯内存 KV 缓存”的角色,成为企业级、可扩展的高速缓存与实时数据平台。
2026-01-21 11:41:17
942
原创 艾体宝洞察 | API 已经快了,系统为什么还是慢?
Redis 很少是系统变慢的原因,但它经常成为暴露问题的那面镜子。如果你的 API 在“加了 Redis 之后”依然迟缓,不妨换个角度思考:也许不是 Redis 没有加速系统, 而是系统本就不该让 Redis 来兜底。测量全链路、设计有缓存意识的架构,让 Redis 只做它最擅长的事。这,才是真正的性能提升来源。
2026-01-21 10:11:07
663
原创 艾体宝方案 | 构建高可靠、低延迟的智能驾驶车云协同中枢
随着智能网联汽车渗透率持续提升,以及相关监管体系与行业标准的逐步完善,车云协同平台正从“增值能力”演进为支撑安全运行与规模化发展的关键基础设施。一方面,围绕事故事件数据记录(EDR)及关键信息管理,监管与行业规范对数据的完整性、时效性与可追溯性提出了更高要求;另一方面,面向高阶辅助驾驶与自动驾驶的应用场景,车端、边缘与云端之间的实时协同决策、安全预警与状态同步,对系统的低延迟、高可靠与跨地域架构能力提出了更高挑战。
2026-01-21 10:02:23
740
原创 艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
随着自动驾驶技术从原型验证迈向规模化商用,研发范式正经历从“以算法为中心”向“以数据为中心”的根本性转变。海量、高维、多模态的道路采集数据,已不再只是测试过程中的副产物,而是驱动算法持续演进、提升系统安全冗余和泛化能力的核心生产资料。然而,当前主流的数据处理模式仍以离线存储与批处理为主,数据在“采集—上传—存储—筛选—标注—训练—验证”之间流转缓慢,形成长周期、低反馈的闭环,逐渐成为制约自动驾驶技术迭代效率的重要瓶颈。Redis 企业版作为一款面向实时与 AI 场景设计的数据平台。
2026-01-21 09:54:24
799
原创 艾体宝方案 | 重塑智能汽车OTA:构建全球级、高可靠、可观测的软件分发与管理系统
这不仅仅是技术的升级,更是运营理念的革新——从被动的、高风险的手动操作,迈向主动的、数据驱动的、全球一体化的软件服务交付。它们能够以毫秒级延迟管理数百万车辆的升级状态流转(待推送、下载中、安装中、成功/失败),并支持基于优先级、区域、车型等多维度的灵活调度。的函数功能允许在数据库内部设置复杂触发器,例如,当“安装失败率”在5分钟内超过0.1%时,自动暂停当前批次任务并告警,实现从“监控”到“动作”的闭环自动化。,并与具体的车辆VIN、任务ID关联,提供毫秒级精度的全链路追溯能力,满足最高级别的审计要求。
2026-01-21 09:45:38
393
原创 艾体宝洞察 | 流程越建越多,效率却在下降?企业真正缺的是决策系统化
如果你的企业也存在这样的情况:流程体系看似完善,但关键节点始终需要人工拍板;规则越来越复杂,却难以统一执行标准;业务团队抱怨响应太慢,而IT团队又不敢轻易调整系统——那么问题很可能并不在流程本身,而在于决策逻辑尚未真正系统化。从“用流程解决所有问题”,到“让流程和决策各归其位”,这不仅是一种管理理念的升级,更是企业提升运营效率、控制风险的重要路径。而Decisions所提供的一体化平台,正是帮助企业完成这一转变的重要工具,让流程回归提效本质,让决策变得清晰、可落地。
2026-01-20 13:19:28
623
原创 艾体宝洞察 | 流程越建越多,效率却在下降?企业真正缺的是决策系统化
如果你的企业也存在这样的情况:流程体系看似完善,但关键节点始终需要人工拍板;规则越来越复杂,却难以统一执行标准;业务团队抱怨响应太慢,而IT团队又不敢轻易调整系统——那么问题很可能并不在流程本身,而在于决策逻辑尚未真正系统化。从“用流程解决所有问题”,到“让流程和决策各归其位”,这不仅是一种管理理念的升级,更是企业提升运营效率、控制风险的重要路径。而Decisions所提供的一体化平台,正是帮助企业完成这一转变的重要工具,让流程回归提效本质,让决策变得清晰、可落地。
2026-01-20 13:18:44
732
原创 艾体宝洞察 | 规则不等于决策:企业为何仍被“经验”绑架
规则本身并非问题根源,规则丧失结构化管理、脱离业务上下文才是核心症结。当规则仍分散存储于文档、Excel及人工经验中时,企业难以真正摆脱对人工决策的依赖。通过Decisions等可视化规则建模工具,将规则转化为可视、可验证、可执行的决策模型,是企业从“流程自动化”向“决策自动化”跨越的关键路径。
2026-01-20 13:16:28
287
原创 艾体宝洞察 | 2025 网络安全回顾与启示:当 “人” 成为企业最大风险与最强防线
通过持续的模拟、教育与培训,您的组织将能显著降低社交工程攻击的成功率,减少因内部失误导致的数据泄露与财务损失,最终在 “人” 的层面建立起竞争对手难以模仿的独特安全优势。失效的培训:形式主义无法铸就 “安全肌肉”许多企业现有的 “安全教育” 流于形式,如每年一次的 PPT 讲座、偶尔发送的安全提醒邮件,其效果微乎其微。安全竞争的下半场,始于对 “人” 的投资HKCERT 的报告传递出一个明确无误的信号:网络安全的竞争,已从单纯的 “技术军备竞赛”,转变为 “人的意识与韧性之争”。
2026-01-19 12:12:17
654
原创 艾体宝洞察 | “顶会”看安全(五):利用系统向量缓解LLM中的系统提示词泄露问题
本文提出了一种简单却高效的提示泄露策略,用于检测当前 SOTA 大语言模型(LLM)的提示泄露风险。该策略的核心在于帮助LLM记住其上下文片段,从而恢复上下文重复能力。通过这一策略,本文成功绕过了现有 SOTA 的防御手段,从主流商用模型(如GPT-4o、Claude 3.5 Sonnet和Gemini 1.5)中获取了系统提示甚至存储的用户信息。本文提出了一种基于表征的防御机制SysVec,通过将系统提示移出大语言模型(LLM)的文本上下文来防止信息泄露。
2026-01-19 11:52:40
698
原创 艾体宝方案|人工智能如何重塑威胁检测与身份安全
在数字化加速的2025年,身份已成为安全防护的新边界与核心攻击面。攻击者不再需要“破门而入”,只需盗用凭据、滥用权限或攻陷特权账户,即可长驱直入。混合环境的复杂性、快速演变的威胁态势,以及机器与人类身份数量的激增,使得传统安全防御体系捉襟见肘。人工智能(AI)正推动安全防御从被动告警模式,向主动、风险感知、以身份为中心的战略转型,重新定义了安全防护的边界与效率。
2026-01-19 11:34:03
559
原创 艾体宝产品 | Redis 企业版 8.0.6 发布:迄今最快、最安全的版本
性能的提升将带来客户直接可见的价值,您现在可以在相同的基础设施上处理更高的流量、更多的用户和更繁重的工作负载。用户能够使用其现有的企业凭证登录 Redis 企业版控制台,而无需管理单独的本机用户名和密码,简化了访问流程,同时提高了安全性。这个新引擎采用了流式架构,可提供更准确、更精细的指标,从而实现更智能的告警、更快速的故障排查和更深入的可见性。这些提升源于 Redis 开源 8.2 的性能优化与 Redis Enterprise 代理的针对性改进的强强联合,共同实现了更快的数据处理和更低的命令延迟。
2026-01-19 11:20:31
791
原创 艾体宝新闻 | Redis 月度更新速览:2025 年 12 月
📊 Redis Cloud 成本报表 API 正式 GARedis Cloud 现已推出,让你能够直接、自动地获取账单数据,而无需再依赖手动从管理界面下载。该 API 基于构建,能够与 FinOps 平台、内部仪表盘和分析工作流无缝集成。你可以按需生成报告,根据日期、订阅、数据库、区域或标签进行筛选,并通过单个端点以 JSON 或 CSV 格式导出结果。这为财务、采购和工程团队提供了一致、结构化且真正可付诸行动的成本数据,让追踪支出、自动化报告和扩展用量变得更加容易,而无需担心账单问题成为阻碍。
2026-01-19 10:54:32
818
原创 艾体宝洞察 | 当AI成为攻击者武器:企业邮件安全的全面升级之战
那些率先采用行为智能分析、构建多层次防护体系、并持续培育安全文化的组织,不仅能够抵御今天的攻击,更将具备应对未来未知威胁的组织韧性——这才是现代企业安全建设的终极目标。在这场不对称的攻防战中,首席信息安全官、IT总监和安全运营团队面临多维度的挑战:攻击技术的迭代速度超越传统安全产品的升级周期,基于静态规则的防御理念在动态威胁面前日益脆弱。邮件安全,AI钓鱼攻击,商务电邮入侵(BEC),行为AI检测,供应链攻击,安全网关(SEG),Microsoft 365安全,社会工程学,安全意识培训,分层防御。
2026-01-16 16:55:43
725
原创 艾体宝产品 | ArangoDB是什么?深入理解多模型数据库
ArangoDB的核心价值在于通过原生多模型架构,打破了不同数据模型之间的壁垒,用统一的内核、查询语言和存储格式,解决了传统多数据库架构的复杂性、低性能、高成本等痛点。它不仅是一个数据库工具,更是一种全新的数据管理理念——让数据模型服务于业务需求,而非让业务需求迁就于数据库的限制。在数据形态日益复杂的今天,多模型数据库已成为应对复杂应用场景的重要选择。ArangoDB凭借其完善的多模型支持、高性能的查询能力和简洁的运维体验,正在成为越来越多企业的首选。
2026-01-16 16:51:46
728
原创 艾体宝新闻 | Node.js 高危安全漏洞:堆栈溢出可能导致服务器崩溃(CVE-2025-59466)
2026年1月13日,Node.js 项目官方披露了新的高危漏洞,漏洞编号为CVE-2025-59466(CVSS评分:7.5)。漏洞成因在于Node.js 使用 V8 JavaScript 引擎,并尝试在调用栈空间耗尽时抛出可捕获的错误,以便运行时或框架可以优雅处理异常,保持服务可用。
2026-01-16 16:47:19
466
原创 行业热点 | 眼见不为实:警惕突发事件中的 AI 图像与误导信息
虚假的AI生成图像,与真实的飞机、爆炸视频混杂在一起,制造出一种令人信服却又极度困惑的“真相与虚构混合体”。当伪造的视觉内容与真实事件的外观高度相似时,检测结果会变得不一致,而虚假信息的传播速度,则远快于事实核查机构的响应速度。您可以设计包含“伪造的CEO讲话视频”或“冒充公司活动的AI生成图片”的模拟攻击,测试员工在实际遭遇时的反应,并提供即时反馈和教学,将风险转化为生动的学习机会。AI生成内容,深度伪造,虚假信息,社交媒体操纵,视觉验证,社会工程学,事实核查,数字素养,网络安全意识。
2026-01-12 16:53:49
814
原创 艾体宝洞察 | “顶会”看安全(四):Black hat-揭示 PyTorch 中 TorchScript 引擎的潜在风险
一、pytorch如何保存训练模型最初pytorch用pickle模块进行临时保存程序中的对象(比如训练好的模型、中间计算结果),方便后续直接加载使用。pickle是 Python 的序列化 / 反序列化模块,核心作用是把 Python 对象(比如字典、列表、类实例等)转换成字节流(序列化,称为 “pickling”),或者把字节流恢复成原来的 Python 对象(反序列化,称为 “unpickling”)。
2026-01-07 16:26:49
850
原创 艾体宝方案 | 在Active Directory中实施基于角色的访问控制:从权限混乱到有序管理
在Active Directory环境中,最大的安全隐患往往源于将正确的访问权限授予了错误的人员。面对权限泛滥、幽灵特权、嵌套组混乱等问题,基于角色的访问控制(RBAC)成为唯一可持续的解决方案。本文将从实际应用角度出发,提供一套零理论、可操作的AD RBAC实施指南,帮助您构建清晰、可审计的权限管理体系。用简短短语命名功能角色,例如:“财务:账户经理”“支持:AD密码重置”“备份:文件服务器恢复操作员”每个角色都应回答两个问题:该角色允许我做什么?该角色访问哪些数据/系统?
2026-01-06 17:32:17
616
原创 艾体宝案例 | 某大型科技企业基于Lepide构建可持续数据安全审计体系的实战案例
本白皮书系统阐述了一家拥有超过1500名活跃AD用户的大型科技企业,在复杂的混合IT环境中,通过部署Lepide数据安全平台,实现全面、可持续的数据安全治理与合规审计的完整历程。案例深入剖析了从。
2026-01-06 17:23:50
332
原创 艾体宝干货 | 【Redis实用技巧#8】缓存层的背后,不同的选择
当业务流量持续增长,应用变得越来越慢。有人开始盯着数据库监控看:CPU 长时间打满、慢查询暴增、连接数不断堆积。于是尝试纵向扩容服务器,扩了一次又扩一次。给表加索引、调参数、改 SQL,但问题始终没有根本缓解,数据库变成了。再仔细一看,问题其实很明显:数据库在反复做同样的事情。同一个用户资料查询同一份「热门商品」榜单同一个仪表盘里那条代价极高的聚合 SQL本文将围绕三类最常见、也最关键的手段展开:RedisMemcachedMaterialized View(物化视图)
2026-01-06 16:48:59
640
原创 艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
水军乱象的治理,本质是对“虚假关系”与“不实内容”的精准甄别,而这正是图数据库与向量检索技术的核心优势所在。ArangoDB通过“多元关联图谱构建-图算法异常检测-向量检索内容佐证”的全链路方案,打破了传统水军识别的单一维度局限,实现了从“被动应对”到“主动预防”的治理升级。在数字社交生态日益复杂的今天,这类以技术创新为核心的治理方案,不仅能够帮助平台精准打击水军乱象,更能守护真实的信息传播秩序,提升平台公信力,最终推动社交生态的良性发展。
2026-01-06 16:47:42
385
原创 艾体宝案例 | ArangoDB赋能电商个性化推荐:精准匹配需求,拓展增长空间
在电商个性化推荐场景中,如何在精准性与拓展性之间取得平衡始终是关键挑战。ArangoDB通过对图模型与向量数据的统一支持,为构建融合型推荐系统提供了稳定、高性能的数据基础。借助这一能力,电商平台可以更灵活地设计推荐策略,在降低系统复杂度的同时,不断优化推荐体验,为业务增长提供持续动力。
2026-01-06 16:46:08
341
原创 艾体宝洞察 | Mend 洞察 |「影子 AI」已经进到你的供应链:Mend AI 如何把治理前移到每一次合并之前?
当生成式 AI 进入研发流程,你的风险不再只来自 CVE—— 还来自「看不见的模型、框架、代理与提示词」。Mend AI 的主题核心,是用自动化盘点、风险洞察、提示词加固、AI 红队与政策治理,把 AI 应用安全从事后救火改成事前控管与可稽核治理。
2026-01-06 15:21:05
855
原创 艾体宝新闻 | NPM 惊现「幽灵字体」攻击:拆解黑客如何利用 900GB 假字体档瘫痪您的供应链防线
摘要 :Mend.io 威脅情報團隊於 2025 年 12 月 16 日截獲一場極具隱蔽性的供應鏈攻擊行動。一名代號為sdjkals的用戶正以驚人的速度向 NPM 註冊表灌注偽裝成 WOFF2 字體檔的惡意分片載荷(Split Payloads)。本文將深度剖析這種繞過傳統靜態檢測的「化整為零」戰術,並提供 Mend.io 的防禦策略,協助企業在駭客組裝完畢前斬斷攻擊鏈。
2026-01-06 12:01:44
808
原创 艾体宝洞察 | 生成式AI上线倒计时:Redis如何把“延迟”与“幻觉”挡在生产线之外?
生成式 AI 项目真正的风险,往往不是模型不够强,而是数据层跟不上:一旦延迟飙升、上下文丢失、检索不稳定,Copilot 会在尖峰流量下变成“昂贵但不可信的聊天窗口”。在多个已公开的 AI 系统实作中,Redis 被用来承担向量检索、会话记忆与缓存,直接把体感延迟与业务指标拉回可控范围。
2025-12-26 16:13:24
573
原创 艾体宝方案 | 容灾架构设计:双活 vs 主备模式的技术决策
同时,团队能力建设是成功实施容灾架构的根本保障,双活架构要求团队具备深厚的分布式系统理论基础和数据一致性处理经验,而主备架构则更加注重运维团队的监控告警和快速故障响应能力。Service Mesh 技术通过 sidecar 代理模式为容灾提供了更加精细的流量控制和故障处理能力,AI 驱动的智能运维系统能够基于历史数据和实时监控信息预测潜在故障并提前调度资源,而边缘计算的普及则要求容灾架构适应更加复杂的分布式网络拓扑结构。记住,优秀的架构设计源于对业务需求的深度理解,而不是对技术的盲目追求。
2025-12-26 15:34:22
792
原创 艾体宝洞察 | 为何缓存策略可能拖累系统表现?下一步该考虑什么?
缓存策略是系统性能与成本的平衡艺术。基于业务特征选择缓存策略组合建立全链路监控体系采用 Redis 等专业缓存中间件替代原生方案如需技术咨询或定制解决方案,请联系我们的技术团队获取支持。
2025-12-26 15:30:52
929
原创 艾体宝干货 | 三层缓存架构扛住流量冲击,源站稳如泰山
单一 Redis 能解决很多问题,但要撑住高并发、全球访问、动态内容,依赖分层架构 + 灵活策略的体系更为稳妥。CDN 扛静态,边缘 KV 扛动态,Redis 兜底,再配上软 / 硬 TTL、single-flight、抖动这些细节,真正做到源站稳了,用户快了,值班也能睡个安稳觉了。如果刚开始试,不用一步到位,我们建议先搞 CDN + Redis 组合,跑顺了再加边缘层,成本低还见效快。
2025-12-26 15:27:03
885
原创 艾体宝新闻 | Redis 荣获 ISO/IEC 42001 认证,彰显其负责任的人工智能实践
为获得此项殊荣,我们接受了一家经认可的第三方机构执行的严格、独立的审核,在此过程中,我们的 AI 治理、透明度及风险管理实践都受到了深入审查,并依据 ISO/IEC 42001 的要求进行了衡量。这一重大成就体现了我们坚定不移的承诺,即在客户将最关键的数据托付给我们时,为其提供高度的透明度、问责制和保障。所有与 Redis ISO/IEC 42001 认证相关的文档,以及关于安全、信任与合规的补充材料,均可通过 Redis 客户信任中心(我们也深知,信任必须通过行动赢得,而非仅仅是口头声明。
2025-12-23 17:08:13
232
原创 艾体宝洞察 | Redis vs ElastiCache:哪个更具成本效益?
ElastiCache 最大的成本驱动因素很容易被忽视:您永远无法将节点的全部内存用作可用的键空间。根据 AWS 的官方文档,默认情况下有 25% 的内存被预留用于备份和复制等操作,这部分内存是不可用的。因此,客户实际可用的容量要小于实例规格所标示的数值。这一点至关重要,因为您支付的正是内存的费用。如果您根据规格而非可用键空间来规划容量,那么您将面临选择:要么淘汰更多数据,要么处理内存不足错误,要么通过增加分片、副本或迁移到更大节点来推高您的 ElastiCache 账单。
2025-12-23 17:05:32
915
PF_ring的多种负载均衡方法.pdf
2020-08-20
网络行业趋势2021.pdf
2021-12-07
GTP-Load-Balancing.pdf
2020-08-25
用户案例-虚拟和物理环境中多用户的网络监控
2023-05-05
Overlay网络技术原理介绍.pdf
2020-05-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅