- 博客(559)
- 资源 (8)
- 收藏
- 关注
原创 【Redis实用技巧#12】如何向 Redis 批量写入海量数据?
Redis 很少成为批量写入慢的真正原因。真正的差距,往往来自客户端行为模型与网络交互模式命令快 ≠ 写入快内存快 ≠ 网络快架构正确 ≠ 使用方式正确在数据规模足够大时,写入策略本身就是性能工程的一部分。理解这一点,既能避免生产问题,也能在应用中拉开差距。
2026-02-14 17:39:25
204
原创 【Redis实用技巧#11】Redis 集群 vs 单机:不可忽视的 20% 延迟税
Redis 集群与单机之争,本质上不是技术对错的问题,而是**业务时机与权衡(Trade-offs)**的问题。Redis 集群是一个强大的工具,但它就像是一台重型卡车——当你需要运送 50 吨货物时,它是唯一的选择;但如果你只是想去街角买杯咖啡,它的启动成本和油耗只会成为你的负担。在决定上集群之前,请先做好基准测试。永远不要假设分布式系统不收利息,因为那 20% 的延迟税,最终都会由你的用户体验来买单。
2026-02-14 17:32:57
398
原创 艾体宝洞察 | 流程自动化的下一步,是决策自动化
流程自动化只是企业数字化转型的“第一步”,它解决的是“执行效率”问题,却无法触及“决策核心”。当下,企业想要突破数字化效率瓶颈,必须认清一个核心:流程只是信息和任务的“搬运工”,决策才是驱动业务发展的“核心引擎”。数字化升级的下一步,就是让决策逻辑从“隐性”变“显性”、从“人工”变“自动”、从“不可追溯”变“全程可查”——这就是决策自动化的核心意义,也是企业实现高质量、高效率发展的关键方向。
2026-02-14 17:25:39
316
原创 艾体宝洞察 | 为什么低代码更适合规则密集型业务?
如果你的企业业务,正面临这样的困境:规则数量多、变更频繁,还经常需要“临时调整”;业务人员提出的简单规则修改需求,IT 部门却需要花费大量时间排期开发;规则逻辑越来越模糊,系统响应越来越滞后……请记住,问题往往不在于业务本身的复杂性,而在于你选择的技术实现方式。低代码从来不是“偷懒的工具”,它不是为了减少代码量,而是为了适配规则密集型业务的核心需求——让规则回归业务本身,让业务更灵活、让 IT 更高效、让决策更快速。
2026-02-14 17:20:00
416
原创 艾体宝干货 | 实时监控+权限管理:Lepide构建AI时代的数据防泄漏体系
人工智能技术在企业中的广泛应用带来了工作效率提升与决策能力优化,但同时也带来了数据安全方面的隐忧。AI 系统通常需要大量敏感信息进行训练与推理,若缺乏有效管控,数据极有可能被泄露或滥用。
2026-02-14 15:51:30
360
原创 艾体宝洞察 | “关系+图”混用VS艾体宝ArangoDB多模型数据库,为什么混用的架构越复杂?
关系 + 图”混用本身并不是错误的选择,但它有一个不可逾越的前提:业务边界清晰、系统规模可控,且团队有足够的精力长期承担复杂度维护的成本。但在实际业务中,当复杂度已经成为制约业务发展的主要矛盾时,继续通过“增加一个数据库”的方式解决单点问题,往往只会陷入“越叠加、越复杂”的恶性循环,系统会变得越来越臃肿,维护成本越来越高,最终反过来限制业务的迭代速度。而这,正是多模型数据库被提出的真正背景之一:不是为了“多一种选择”,而是为了“少一种拆分”,用统一的数据视图,化解混合查询带来的架构复杂度。
2026-02-14 11:04:55
563
原创 艾体宝干货 | 深入解析 LastLogon、LastLogonTimestamp 和 LastLogonDate 的区别
Active Directory操作中的安全标识符是记录用户授权过程信息的基础参数。它们使管理员能够追踪访问活动并识别潜在问题,例如长期未登录的用户。举例来说,当企业需要识别已闲置90天的账户时,通常会使用LastLogonTimeStamp属性。而另一方面,在取证调查中则需要依赖LastLogon属性的精确结果——该属性记录了用户在特定域控制器(DC)上的实际登录时间。LastLogon属性记录了用户在特定域控制器(DC)上的最后一次登录时间。
2026-02-05 11:20:04
562
原创 艾体宝洞察 | 在 ISO/IEC 27001 合规框架下,Lepide 实现持续合规的技术路径解读
当内置的威胁模型检测到与勒索软件加密、内部数据窃取等匹配的异常模式时,平台可自动告警并触发预定义的响应流程,如通知安全人员、提供详细的取证数据,从而显著缩短从事件检测到响应(MTTR)的时间,有效支持安全事件的应对。本文旨在探讨,如何通过引入以数据为中心的安全平台,将ISO 27001的合规性验证,从一项周期性的项目管理任务,重构为一个植根于日常运营、由数据驱动、并能够动态适应风险的持续治理过程。:通过持续监控与智能分析,实现从被动响应到主动预防的转变,提前发现并处置风险,满足标准对“预防措施”的期待。
2026-02-05 11:05:15
593
原创 艾体宝干货 | 【Redis实用技巧#10】警惕!这个 Redis Key 设计模式正在榨干你的内存
从 98% 且频繁 OOM 降至稳定的45%从 1200 万骤减至28 万从 850ms 降低到120ms原计划升级至 64GB 实例,如今 16GB 即可高效运行。
2026-02-04 11:08:39
531
原创 艾体宝干货 | 【Redis实用技巧#9】FastAPI + Redis + 滑动窗口:告别误伤,实现公平限流
是否想设计一套让用户感到公平的 API 限流规则?通过平滑流量,避免随机触发 429 错误,并借助 Redis 与真正的滑动窗口算法,实现足够健壮的限流执行,以适应复杂的生产环境。如果限流器上线后立刻收到客诉,并非个例。事实上,大多数所谓“简单”的限流方案,其简单程度就如同将折叠椅当作简单梯子来用,平时凑合,但一旦出问题便可能是严重的故障,且往往发生在最不该出错的时刻。正确的解决方式不是提高限流阈值,而是让限流规则更具公平性。
2026-02-04 10:52:31
592
原创 艾体宝洞察 | IT部门被动救火的根源:决策逻辑与系统耦合困境
若企业IT团队正面临以下困境:规则变更频繁但系统改动风险过高,业务部门认为需求简单而IT部门深知潜在风险,大量工时耗费于逻辑修补而非价值创造,那么问题的核心大概率不在于技术能力,而在于决策逻辑未实现系统化、解耦化管理。解决IT部门被动救火问题的关键,不在于单纯增加人力与代码量,而在于重构决策逻辑与系统架构的关系,推动IT部门回归业务赋能的核心定位。
2026-02-04 10:37:24
625
原创 艾体宝干货 | 多模型数据库解决的到底是什么问题?
多模型数据库从不是数据库发展的“终极形态”,而是针对复杂业务结构的理性工程选择。它的核心价值,不在于支持多少种数据模型,而在于能否帮系统规避不必要的架构拆分,让数据管理回归业务本质。对于受困于多数据库架构内耗、业务数据关系复杂的企业而言,ArangoDB所践行的多模型思路,为破解复杂度困局、实现业务敏捷迭代提供了一种有效路径。
2026-02-03 16:38:26
527
原创 艾体宝新闻 | NPM 生态系统陷入困境:自我传播恶意软件在大规模供应链攻击中感染了 187 个软件包
此次攻击影响了数百万周下载量的软件包,包括 angulartics2、ngx-toastr 和 @ctrl/tinycolor,表明网络犯罪分子正在改进其策略,以创造出能够在软件供应链中自主传播的「蠕虫式」恶意软件。本博客将全面分析此次攻击的方法、恶意负载的技术能力,以及与这次前所未有的供应链入侵相关的入侵指标 (IOC)。恶意代码会扫描受感染环境中的 npm 项目,自动修改其依赖项,并将其与嵌入的恶意软件一起重新发布,从而形成指数级的增长模式,能够迅速危及整个软件生态系统。
2026-01-29 17:24:56
934
原创 艾体宝新闻 | Mend.io 将其人工智能原生应用安全能力扩展至 Windsurf、CoPilot、Claude Code 与 Amazon Q Developer
如今,Mend.io 正在扩展其应用安全 (AppSec) 能力,为五款最受欢迎的——包括——提供安全保障,确保开发者能够以人工智能的速度高效工作,而无需在安全性上做出任何妥协。
2026-01-29 17:15:19
257
原创 艾体宝干货 | 深入解析 LastLogon、LastLogonTimestamp 和 LastLogonDate 的区别
Active Directory操作中的安全标识符是记录用户授权过程信息的基础参数。它们使管理员能够追踪访问活动并识别潜在问题,例如长期未登录的用户。举例来说,当企业需要识别已闲置90天的账户时,通常会使用LastLogonTimeStamp属性。而另一方面,在取证调查中则需要依赖LastLogon属性的精确结果——该属性记录了用户在特定域控制器(DC)上的实际登录时间。LastLogon属性记录了用户在特定域控制器(DC)上的最后一次登录时间。
2026-01-29 16:45:32
702
原创 艾体宝产品 | Active Directory审计九大关键缺陷
在数字化转型与网络安全威胁并行的时代,Active Directory(活动目录)作为企业身份管理的核心枢纽,其审计能力直接关乎全局安全水位。本文深度剖析Active Directory原生审计的九大致命缺陷,基于行业数据揭示隐性成本黑洞,并指出现代化审计工具的进化路径——这不仅是技术升级,更是企业安全战略的范式革命。:依赖“事件触发-响应”的被动模式,本质上是一种“亡羊补牢”式的安全策略,难以满足企业主动防御的安全需求。,能够系统性解决本文所述的九大原生缺陷(尽管选择合适的方案本身需要严谨的技术评估)。
2026-01-29 15:03:26
669
原创 艾体宝方案 | 身份与访问管理(IAM)如何强化企业合规性
本文基于 IBM《2024 年数据泄露成本报告》揭示的全球数据安全现状,系统阐述了身份与访问管理(IAM)在企业合规管理中的核心价值。文章首先剖析了合规与 IAM 的紧密关联,指出 IAM 是实现高水准责任追溯、应对动态合规需求的关键;接着详细梳理了 IAM 针对权限滥用、可视性不足、审核低效、身份蔓延等四大合规挑战的解决方案;随后介绍了 IAM 通过自动化身份生命周期管理、RBAC 等功能强化合规的具体路径,以及其在提升效率、优化体验、助力创新、构建信任等方面的额外业务价值。
2026-01-29 14:54:29
514
原创 艾体宝方案 | AI时代的数据安全与Lepide智能治理方案
随着 AI 深度融入企业业务流程,数据泄露风险不再局限于传统攻击面,而是渗透在员工日常使用 AI 工具的每一次交互中。Lepide 通过数据发现 → 权限治理 → 行为审计 → 风险预警的完整链路,为企业构建自适应数据安全屏障。采用 Lepide 的企业能够:在部署 AI 之前完成安全基线治理在 AI 使用过程中实现持续监控与预警在 AI 集成扩展时提前识别潜在风险在合规方面保持长期可持续性帮助企业在不牺牲安全的前提下,更安心地拥抱 AI。
2026-01-29 14:26:06
556
原创 艾体宝方案 | 守护核心数据资产:文件服务器访问与敏感数据防泄漏实践
近年来,全球范围内数据泄露事件呈现爆发式增长。根据奇安信发布的《2024 中国政企机构数据安全风险研究报告》,2024 年全球公开披露的重大数据泄露事件共涉及 471.6 亿条数据,较 2023 年的 103.8 亿条增长约 354.3%。与此同时,数据泄露的经济成本也持续攀升。IBM 与 Ponemon 研究所联合发布的《2024 年数据泄露成本报告》指出,全球单起数据泄露事件的平均成本已达到 488 万美元,创下历史新高。值得注意的是,人为因素已成为数据泄露的主要诱因。
2026-01-29 14:15:56
680
原创 艾体宝方案 | 从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(4)】
随着人工智能(AI)技术的不断进步和广泛应用,AI已经渗透到金融、医疗、制造、自动驾驶等多个行业。尽管AI带来了巨大的创新和效率提升,但随着其应用范围的扩大,AI的安全性问题也逐渐暴露出来。AI应用安全不仅仅局限于算法模型的本身,更多的是涉及数据隐私、对抗攻击、模型滥用、合规性问题以及垂直行业应用中的特殊风险。因此,企业需要全面识别并应对这些AI应用中的潜在风险,构建健全的AI安全管理体系。
2026-01-29 13:59:56
643
原创 艾体宝洞察 | 被忽视的企业威胁:Active Directory组策略错误配置的深度解析与应对
Active Directory中的组策略是企业安全设置、软件部署和操作配置的基石工具。然而,即使是微小的组策略对象(GPO)配置错误——如权限过度开放、安全组分配错误或未监控的变更——都可能引入严重且隐蔽的企业风险。本文将通过具体场景分析GPO错误配置的七大潜在威胁,并提供切实可行的缓解策略,帮助企业建立主动防御体系。
2026-01-29 13:44:20
662
原创 艾体宝方案 | 提升企业反CEO欺诈能力:融合技术与培训的最佳实践
CEO欺诈是一种典型的社会工程学攻击。攻击者往往通过伪造邮件、电话指令或即时通讯信息假冒企业高管、财务人员或合作伙伴,诱导员工执行转账、购买礼品卡或泄露敏感信息等操作。一旦得手,资金会被迅速转移至境外,企业往往难以及时追回。欺骗性极强:攻击手段高度拟真,极难依靠传统安全工具拦截。影响范围广:目标从大型跨国企业到中小型公司均可能受害。损失巨大:单次攻击可造成数百万甚至上亿美元的损失。网络安全已成为企业稳健成长与数字化发展的基石。面对日益猖獗的CEO欺诈与BEC攻击,企业唯有提前防范,将。
2026-01-23 11:50:50
679
原创 艾体宝案例 | 90天拦截502封高危邮件,First Bank如何实现邮件安全全面可视化?
作为一家高速发展的美国银行,First Bank and Trust(以下简称 First Bank)深知,确保邮件通信的机密性至关重要,以避免数据泄露、监管处罚以及声誉受损的风险。“邮件是我们的主要沟通渠道,在大量敏感数据通过邮件传递的情况下,只要有一次成功的钓鱼攻击或误发邮件给未经授权的收件人,就可能引发严重后果。—— First Bank 信息安全官 Michael Weaver他指出,这些事件不仅会影响组织运营,还可能使客户面临身份盗用或金融欺诈的风险。
2026-01-23 11:32:00
715
原创 艾体宝洞察 | 多因素身份验证(MFA)并非“万能钥匙”:解析攻击路径与防护建议
多因素身份验证(Multi-Factor Authentication,简称MFA)是一种比“用户名+密码”更安全的登录方式。它要求用户在登录账户时,提供两种或以上不同类型的信息,用来证明“你就是你本人”。这个方法就像进门要两把钥匙:不仅要有门钥匙,还要有门禁卡,才能打开。你知道的东西(比如密码、验证码、PIN码)你拥有的东西(比如手机、U盾、动态令牌)你本人的特征(比如指纹、面部识别、声音)只要满足其中两个或以上,就能登录。
2026-01-23 11:13:30
700
原创 艾体宝洞察 | 理解生成式人工智能中的偏见:类型、原因和后果
1. 构建多样化、有代表性的训练数据 要减少生成式AI中的偏见,最基础的做法是创建和策划多样化且具有代表性的训练数据集。有针对性的外展、谨慎的数据抽样以及与领域专家的合作,可以帮助弥补常常导致AI输出中代表性不足和错误描述的差距。生成式AI的偏见,指的是生成式AI模型在产出信息时出现的系统性错误或扭曲,这可能导致不公平或歧视性的结果。当某些群体在生成式AI系统的输出中持续处于不利地位时,就会产生歧视性结果,例如,招聘工具根据带有性别或种族色彩的姓名筛选简历,或图像生成器产生对少数群体的刻板描绘。
2026-01-22 12:49:00
790
原创 艾体宝洞察 | 2025 年你需要了解的 58 个生成式人工智能统计数据
深度学习的进步,特别是Transformer模型的发展,使得像ChatGPT和Stable Diffusion这样的系统能够生成类人文本和逼真的图像。这些工具降低了非技术用户的使用门槛,扩大了AI采纳者的基础,并提高了日常工作流程的生产力。随着生成式AI的不断发展,各组织不仅在调整其运营方式,还在制定相应的政策,以应对强大内容生成工具带来的风险。3.到2032年,仅生成式AI的软件收入就可能产生2800亿美元,以42%的复合年增长率(CAGR)增长(Bloomberg Intelligence)。
2026-01-22 12:31:18
489
原创 艾体宝洞察 | 缓存策略深度解析:从内存缓存到 Redis 分布式缓存
缓存不是简单地把数据往内存里一放就完事,而是需要根据业务特点精心设计的系统工程。选择一个正确的缓存策略正是意味着应用程序在负载下能稳定运行和崩溃之间的差别。单体应用或简单场景:优先考虑进程内缓存分布式架构或复杂业务:选择 Redis 等分布式缓存混合使用:L1(进程内)+ L2(Redis)的多级缓存架构合理设置 TTL,平衡数据一致性和缓存效果实现完善的缓存更新和清理机制建立监控体系,持续优化缓存命中率考虑缓存失效的降级策略好的缓存策略往往比增加服务器更能解决性能问题。
2026-01-22 11:58:53
939
原创 艾体宝洞察 | 不止步于缓存 - Redis 多数据结构平台的演进与实践
总而言之,Redis 已经从简单的缓存演进为一个强大的数据平台,能够处理复杂的实时应用程序。凭借 18 种现代数据结构、跨节点的自动数据分片以及实时同步能力,Redis 为多组件架构提供了一个极具吸引力的替代方案。在如下场景,Redis 的优势尤为突出:实时分析与监控用户会话管理流式数据处理实时排行榜与竞赛系统核心在于,工程师要能够识别业务如何能够从 Redis 丰富的功能整合中受益。
2026-01-21 11:59:20
1099
2
原创 艾体宝方案 | Redis Caching 专题应用解决方案
Redis 已超越“单纯内存 KV 缓存”的角色,成为企业级、可扩展的高速缓存与实时数据平台。
2026-01-21 11:41:17
966
原创 艾体宝洞察 | API 已经快了,系统为什么还是慢?
Redis 很少是系统变慢的原因,但它经常成为暴露问题的那面镜子。如果你的 API 在“加了 Redis 之后”依然迟缓,不妨换个角度思考:也许不是 Redis 没有加速系统, 而是系统本就不该让 Redis 来兜底。测量全链路、设计有缓存意识的架构,让 Redis 只做它最擅长的事。这,才是真正的性能提升来源。
2026-01-21 10:11:07
680
原创 艾体宝方案 | 构建高可靠、低延迟的智能驾驶车云协同中枢
随着智能网联汽车渗透率持续提升,以及相关监管体系与行业标准的逐步完善,车云协同平台正从“增值能力”演进为支撑安全运行与规模化发展的关键基础设施。一方面,围绕事故事件数据记录(EDR)及关键信息管理,监管与行业规范对数据的完整性、时效性与可追溯性提出了更高要求;另一方面,面向高阶辅助驾驶与自动驾驶的应用场景,车端、边缘与云端之间的实时协同决策、安全预警与状态同步,对系统的低延迟、高可靠与跨地域架构能力提出了更高挑战。
2026-01-21 10:02:23
763
原创 艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
随着自动驾驶技术从原型验证迈向规模化商用,研发范式正经历从“以算法为中心”向“以数据为中心”的根本性转变。海量、高维、多模态的道路采集数据,已不再只是测试过程中的副产物,而是驱动算法持续演进、提升系统安全冗余和泛化能力的核心生产资料。然而,当前主流的数据处理模式仍以离线存储与批处理为主,数据在“采集—上传—存储—筛选—标注—训练—验证”之间流转缓慢,形成长周期、低反馈的闭环,逐渐成为制约自动驾驶技术迭代效率的重要瓶颈。Redis 企业版作为一款面向实时与 AI 场景设计的数据平台。
2026-01-21 09:54:24
833
原创 艾体宝方案 | 重塑智能汽车OTA:构建全球级、高可靠、可观测的软件分发与管理系统
这不仅仅是技术的升级,更是运营理念的革新——从被动的、高风险的手动操作,迈向主动的、数据驱动的、全球一体化的软件服务交付。它们能够以毫秒级延迟管理数百万车辆的升级状态流转(待推送、下载中、安装中、成功/失败),并支持基于优先级、区域、车型等多维度的灵活调度。的函数功能允许在数据库内部设置复杂触发器,例如,当“安装失败率”在5分钟内超过0.1%时,自动暂停当前批次任务并告警,实现从“监控”到“动作”的闭环自动化。,并与具体的车辆VIN、任务ID关联,提供毫秒级精度的全链路追溯能力,满足最高级别的审计要求。
2026-01-21 09:45:38
420
原创 艾体宝洞察 | 流程越建越多,效率却在下降?企业真正缺的是决策系统化
如果你的企业也存在这样的情况:流程体系看似完善,但关键节点始终需要人工拍板;规则越来越复杂,却难以统一执行标准;业务团队抱怨响应太慢,而IT团队又不敢轻易调整系统——那么问题很可能并不在流程本身,而在于决策逻辑尚未真正系统化。从“用流程解决所有问题”,到“让流程和决策各归其位”,这不仅是一种管理理念的升级,更是企业提升运营效率、控制风险的重要路径。而Decisions所提供的一体化平台,正是帮助企业完成这一转变的重要工具,让流程回归提效本质,让决策变得清晰、可落地。
2026-01-20 13:19:28
630
原创 艾体宝洞察 | 流程越建越多,效率却在下降?企业真正缺的是决策系统化
如果你的企业也存在这样的情况:流程体系看似完善,但关键节点始终需要人工拍板;规则越来越复杂,却难以统一执行标准;业务团队抱怨响应太慢,而IT团队又不敢轻易调整系统——那么问题很可能并不在流程本身,而在于决策逻辑尚未真正系统化。从“用流程解决所有问题”,到“让流程和决策各归其位”,这不仅是一种管理理念的升级,更是企业提升运营效率、控制风险的重要路径。而Decisions所提供的一体化平台,正是帮助企业完成这一转变的重要工具,让流程回归提效本质,让决策变得清晰、可落地。
2026-01-20 13:18:44
739
原创 艾体宝洞察 | 规则不等于决策:企业为何仍被“经验”绑架
规则本身并非问题根源,规则丧失结构化管理、脱离业务上下文才是核心症结。当规则仍分散存储于文档、Excel及人工经验中时,企业难以真正摆脱对人工决策的依赖。通过Decisions等可视化规则建模工具,将规则转化为可视、可验证、可执行的决策模型,是企业从“流程自动化”向“决策自动化”跨越的关键路径。
2026-01-20 13:16:28
295
原创 艾体宝洞察 | 2025 网络安全回顾与启示:当 “人” 成为企业最大风险与最强防线
通过持续的模拟、教育与培训,您的组织将能显著降低社交工程攻击的成功率,减少因内部失误导致的数据泄露与财务损失,最终在 “人” 的层面建立起竞争对手难以模仿的独特安全优势。失效的培训:形式主义无法铸就 “安全肌肉”许多企业现有的 “安全教育” 流于形式,如每年一次的 PPT 讲座、偶尔发送的安全提醒邮件,其效果微乎其微。安全竞争的下半场,始于对 “人” 的投资HKCERT 的报告传递出一个明确无误的信号:网络安全的竞争,已从单纯的 “技术军备竞赛”,转变为 “人的意识与韧性之争”。
2026-01-19 12:12:17
674
原创 艾体宝洞察 | “顶会”看安全(五):利用系统向量缓解LLM中的系统提示词泄露问题
本文提出了一种简单却高效的提示泄露策略,用于检测当前 SOTA 大语言模型(LLM)的提示泄露风险。该策略的核心在于帮助LLM记住其上下文片段,从而恢复上下文重复能力。通过这一策略,本文成功绕过了现有 SOTA 的防御手段,从主流商用模型(如GPT-4o、Claude 3.5 Sonnet和Gemini 1.5)中获取了系统提示甚至存储的用户信息。本文提出了一种基于表征的防御机制SysVec,通过将系统提示移出大语言模型(LLM)的文本上下文来防止信息泄露。
2026-01-19 11:52:40
712
原创 艾体宝方案|人工智能如何重塑威胁检测与身份安全
在数字化加速的2025年,身份已成为安全防护的新边界与核心攻击面。攻击者不再需要“破门而入”,只需盗用凭据、滥用权限或攻陷特权账户,即可长驱直入。混合环境的复杂性、快速演变的威胁态势,以及机器与人类身份数量的激增,使得传统安全防御体系捉襟见肘。人工智能(AI)正推动安全防御从被动告警模式,向主动、风险感知、以身份为中心的战略转型,重新定义了安全防护的边界与效率。
2026-01-19 11:34:03
570
原创 艾体宝产品 | Redis 企业版 8.0.6 发布:迄今最快、最安全的版本
性能的提升将带来客户直接可见的价值,您现在可以在相同的基础设施上处理更高的流量、更多的用户和更繁重的工作负载。用户能够使用其现有的企业凭证登录 Redis 企业版控制台,而无需管理单独的本机用户名和密码,简化了访问流程,同时提高了安全性。这个新引擎采用了流式架构,可提供更准确、更精细的指标,从而实现更智能的告警、更快速的故障排查和更深入的可见性。这些提升源于 Redis 开源 8.2 的性能优化与 Redis Enterprise 代理的针对性改进的强强联合,共同实现了更快的数据处理和更低的命令延迟。
2026-01-19 11:20:31
829
PF_ring的多种负载均衡方法.pdf
2020-08-20
网络行业趋势2021.pdf
2021-12-07
GTP-Load-Balancing.pdf
2020-08-25
用户案例-虚拟和物理环境中多用户的网络监控
2023-05-05
Overlay网络技术原理介绍.pdf
2020-05-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅