多层感知机的简洁实现
(通过高级API更简洁地实现多层感知机)
导入库
import torch
from torch import nn
from d2l import torch as d2l
模型
与softmax回归的简洁实现( :numref:sec_softmax_concise)相比,唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。第一层是隐藏层,它(包含256个隐藏单元,并使用了ReLU激活函数)。第二层是输出层。
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
#load_data_fashion_mnist()函数在此前数据集获取打包
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
小结
我们可以使用高级API更简洁地实现多层感知机。
对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。