核函数一般有如下函数
高斯函数
ϕ(u)=e−u2δ2
反射Sigmoid函数
ϕ(u)=11+eu2δ2
逆多二次函数
ϕ(u)=1(u2+δ2)12
其中, δ>0 为基函数的拓展常数或宽度。
RBF(径向基函数神经网络)网络结构图如下
对于输入
x=(x1,x2,⋯,xn)T
,
c1,c2,⋯,cm
为样本中心,
w=(w1,w2,⋯,wm×h)
为输出权重。则其第
yi
个输出为
yi=∑i=1hwijϕ(||x−ci||), 1≤j≤m
原理
- 内插问题
假设有 n 个训练数据,输入为xi,1≤i≤n ,输出为 yi,1≤i≤n ,则问题为求函数 F ,使y=F(x) 。
训练:
做插值问题时,可将 n 个训练数据作为样本中心,则问题只需要求w=(w1,w2,⋯,wn) 。 假设当输入为 xi,i=1,2,⋯,N ,则第 j 个输出为
hij=ϕj(||xi−cj||)
其中, ϕj 为该隐含层节点的激活函数, cj=xj 为隐含层样本中心,用 H 表示 [hij] ,则RBF网络输出为
yi=F(xi)=∑j=1Nhijwj=∑j=1Nϕj(||xi−cj||)
令 yi=F(xi) , y=tT=(y1,y2,⋯,yN)T , w=(w1,w2,⋯,wN)T ,则有
y=Hw
一般情况下,使用 N 个样本进行训练,此时w 也为 N 元,此时H 可逆,则可以求解 w
w=H−1y
存在问题: 容易出现过拟合
正则化网络
假定
S={(xi,yi)∈RN×R|i=1,2,⋯,N}
为训练数据,若通过均方误差最小化目标函数,其目标函数为
ES(F)=12∑i=1N(yi−F(xi))2
添加正则化项,
ER(F)=12||DF||2
则添加了正则化项的误差函数为
E(F)=ES(F)+λER(F)
通过求解上述误差函数的最小值,即
minE(F)=ES(F)+λER(F)=12∑i=1N(yi−F(xi))2+12||DF||2
求解上面式子,可以得
F(x)=∑i=1NwiG(x,xi)W=(G+λI)−1y
G(x,xi) 为Green函数, G 为Green矩阵,Green函数为算子 D 的形式有关。当
不变性, G(x,xi)=G(||x−xi||) 。其中,一个典型的Green函数为
G(x,xi)=exp(−12σ2||x−xi|2|)
可通过K-means聚类确定样本中心。若给定有
k
个样本中心,则可随机取
[1]田玉波,混合神经网络技术,科学出版社,2009年6月
[2]http://blog.sina.com.cn/s/blog_3eca118b0102vt9n.html