CVPR2020 夜间目标检测挑战赛冠军方案解读

文章介绍了CVPR2020夜间目标检测挑战赛的难点,包括运动模糊、图像噪点和低光照下的色彩信息不足。文中提到的解决方案包括采用DoubleHeads结构以改善头部检测,使用CBNet增强backbone性能,以及选择Spatial-level数据增强策略。实验表明,这些方法在保持准确率的同时,需要平衡计算量和速度。未来的工作方向聚焦于寻找更好的夜间图像处理技术。
摘要由CSDN通过智能技术生成

链接:(71条消息) CVPR2020 夜间目标检测挑战赛冠军方案解读_我爱计算机视觉的博客-CSDN博客

1.这次比赛的主要难点包含以下几个方面:

  • 运动模糊和图像噪点

与常规检测数据集不同,该竞赛考虑到实际驾驶情况,所用数据是在车辆行进过程中采集的,所以当车速较快或者有相对运动的时候会产生持续的运动模糊图像。并且由于摄像头是普通的RGB相机,因此在光线较弱的环境下收集的图片质量大幅度下降,这也是影响模型效果的主要原因。

  • 对比度差异大,色彩信息少

这是由于收集数据主要来自于夜间环境所导致的必然结果,所以在进行数据增强的时候需要谨慎,不同增强方式会造成较大的影响。

  • 不同的数据分布

该比赛的数据集涵盖了不同的城市和天气,之前常用的行人检测数据集一般未同时满足这两个条件。该数据具有多样性,且与常用数据集的数据分布存在较大差异。该比赛数据集与常用于训练预训练模型的数据集(如 COCO 数据集、OBJ365)的数据分布存在很大的不同,因此对基于常用数据集预训练的模型进行 fine-tune 的效果不如预期。

1. Double Heads

 

通过观察实验发现,baseline 将背景中的石柱、灯柱等物体检测为行人,这种情况大多和 head 效果不好有关。该团队基于此进行了实验,如 TSD [7]、CLS [8]、double head [9],并最终选择了效果好且性价比高的 double head 结构(如下图所示):

Double Heads 结构

通过对比实验可以发现:使用 FC-head 做分类、Conv-head 做回归,可以得到最好的效果。

分类更多地需要语义信息,而坐标框回归则更多地需要空间信息,double head 方法采用分而治之的思想,针对不同的需求设计 head 结构,因此更加有效。当然这种方法也会导致计算量的增加。在平衡速度和准确率的情况下,该团队最终选择了 3 个残差 2 个 Non-local 共 5 个模块。

2. CBNet [10]

合并功能更强大的 backbone 可提高目标检测器的性能。CBNet 作者提出了一种新颖的策略,通过相邻 backbone 之间的复合连接 (Composite Connection) 来组合多个相同的 backbone。用这种方式他们构建出了一个更强大的 backbone,称为「复合骨干网络」(Composite Backbone Network)。

当然这也带来了模型参数大小和训练时间的增加,属于 speed–accuracy trade-off。该团队也尝试过其他的改进方式,但最终还是选择了实用性更强的 CBNet,该方法不用再额外担心预训练权重的问题。

 

3. 数据增强

该团队发现 Pixel-level 的增强方式导致了性能结果大幅下降,因此没有在这个方向继续尝试。

而图像增强方式 Retinex,从视觉上看带来了图像增强,但是该方法可能破坏了原有图片的结构信息,导致最终结果没有提升。

于是,该团队最终选择了 Spatial-level 的增强方式,使得结果有一定的提升。

 

实验细节

1. 将 Cascade rcnn + DCN + FPN 作为 baseline;

2. 将原有 head 改为 Double head;

3. 将 CBNet 作为 backbone;

4. 使用 cascade rcnn COCO-Pretrained weight;

5. 数据增强;

6. 多尺度训练 + Testing tricks。

未来工作方向:

1. 由于数据的特殊性,该团队尝试使用一些增强方式来提高图片质量、亮度等属性,使图片中的行人更易于检测。但结果证明这些增强方式可能破坏原有图片结构,效果反而降低。该团队相信会有更好的夜间图像处理办法,只是还需要更多研究和探索。

### 夜间目标检测方法 #### 数据预处理 为了有效应对夜间低光照环境下的目标检测问题,在数据预处理阶段可以采取多种措施来改善输入图像的质量。这些措施包括但不限于直方图均衡化、自适应对比度调整以及伽马校正等技术[^2]。 #### 特征提取优化 针对夜间环境中特有的挑战,特征提取过程也需要特别设计。通过引入多尺度卷积神经网络结构,可以在不同层次上捕捉到更多细节信息;同时利用注意力机制聚焦于重要区域,有助于提升模型对弱光下物体轮廓的理解能力[^1]。 #### 增强训练样本多样性 构建专门用于夜间场景的目标检测算法时,应充分考虑收集覆盖各种复杂情况的数据集,并尽可能增加极端天气状况(如下雨天夜晚)、不同类型光源干扰等因素的影响案例。此外,还可以借助合成数据生成工具模拟真实世界中可能遇到的各种情形,以此扩大训练集规模并提高泛化性能[^3]。 #### 后处理改进 完成初步预测之后,进一步采用非极大值抑制(NMS)或其他形式的空间约束规则去除冗余框体标记,确保最终输出更加精准可靠。对于某些特定应用场景而言,如交通监控系统内的车牌识别任务,则可额外加入字符级定位模块以辅助实现更细粒度的对象分类操作。 ```python import cv2 from yolov5 import YOLOv5 def preprocess_image(image_path): image = cv2.imread(image_path) # Apply histogram equalization to enhance contrast under low light conditions gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) enhanced_gray = clahe.apply(gray) return enhanced_gray model = YOLOv5('yolov5s.pt') image_path = 'night_scene.jpg' processed_image = preprocess_image(image_path) results = model.detect(processed_image) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值