Numpy学习(2):NumPy 数组属性

NumPy 数组属性

常用术语

  • 秩(rank)

    • 秩描述 NumPy 数组的维数,即轴的数量。
    • 一维数组的秩为1,二维数组的秩为 2,以此类推。
  • 轴(axis)

    • 每一个线性数组称为一个轴,轴即数组的维度(dimensions)。
  • 例如:将二维数组看作一维数组

    • 此一维数组中每个元素又是一个一维数组。则每个一维数组是 NumPy 的一个轴(axis)。第一个轴相当于是底层数组,第二个轴是底层数组中的数组。

    • 有时可以声明axis。

      • axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;

      • axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

  • ndarray 对象属性

    属性说明
    ndarray.ndim秩,即轴的数量或维度的数量
    ndarray.shape数组的维度,对于矩阵,n 行 m 列
    ndarray.size数组元素的总个数,相当于 .shape 中 n*m 的值
    ndarray.dtypendarray 对象的元素类型
    ndarray.itemsizendarray 对象中每个元素的大小,以字节为单位
    ndarray.flagsndarray 对象的内存信息
    ndarray.realndarray元素的实部
    ndarray.imagndarray 元素的虚部
    ndarray.data包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

ndarray.ndim

  • ndarray.ndim 用于返回数组的维数,等于秩。

    import numpy as np 
     
    a = np.arange(24)  
    print (a.ndim)             # a 现只有一个维度
    # 现在调整其大小
    b = a.reshape(2,4,3)  # b 现在拥有三个维度
    print (b.ndim)
    
    # 输出为:
     	1
        3
    

ndarray.shape

  • 代表数组的维度,返回值为一个元组。这个元组的长度就是ndim属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"

    import numpy as np 
    a = np.array([[1,2,3],[4,5,6]]) 
    print (a.shape)
    
      输出(2,3)
    
  • ndarray.shape 也可以用于调整数组大小

    import numpy as np 
    a = np.array([[1,2,3],[4,5,6]]) 
    a.shape = (3,2) 
    print (a)
    
    #输出结果
     	[[1 2]
      	 [3 4]
      	 [5 6]]
    
  • NumPy中的 reshape 函数也可以调整数组大小

    import numpy as np 
    a = np.array([[1,2,3],[4,5,6]]) 
    b = a.reshape(3,2) 
    print (b)
    #输出结果
     	[[1 2]
      	 [3 4]
      	 [5 6]]
    
  • ndarray.reshape 通常返回的是非拷贝副本,即改变返回后数组的元素,原数组对应元素的值也会改变。

    import numpy as np
    a = np.array([[1,2,3],[4,5,6]])
    b = a.reshape((6,))
    b[0] = 100
    print (a)
    print (b)
    
    #输出结果
      a:array([[100,   2,   3],
            [  4,   5,   6]])
      b:array([100,   2,   3,   4,   5,   6])
    

ndarray.itemsize

  • ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

  • 例子

    • 一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节)
    • 一个元素类型为 complex32 的数组 item 属性为 4(32/8)
  • 例子

    import numpy as np 
     
    # 数组的 dtype 为 int8(一个字节)  
    x = np.array([1,2,3,4,5], dtype = np.int8)  
    print (x.itemsize)
     
    # 数组的 dtype 现在为 float64(八个字节) 
    y = np.array([1,2,3,4,5], dtype = np.float64)  
    print (y.itemsize)
    
    # 输出:
     	1
     	8
    

ndarray.flags

  • ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

    属性描述
    C_CONTIGUOUS ©数据是在一个单一的C风格的连续段中
    F_CONTIGUOUS (F)数据是在一个单一的Fortran风格的连续段中
    OWNDATA (O)数组拥有它所使用的内存或从另一个对象中借用它
    WRITEABLE (W)数据区域可以被写入,将该值设置为 False,则数据为只读
    ALIGNED (A)数据和所有元素都适当地对齐到硬件上
    UPDATEIFCOPY (U)这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新
  • 例子

    import numpy as np 
     
    x = np.array([1,2,3,4,5])  
    print (x.flags)
    
    # 输出结果:
      C_CONTIGUOUS : True
      F_CONTIGUOUS : True
      OWNDATA : True
      WRITEABLE : True
      ALIGNED : True
      WRITEBACKIFCOPY : False
      UPDATEIFCOPY : False
    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值