NumPy 数组属性
常用术语
-
秩(rank)
- 秩描述 NumPy 数组的维数,即轴的数量。
- 一维数组的秩为1,二维数组的秩为 2,以此类推。
-
轴(axis)
- 每一个线性数组称为一个轴,轴即数组的维度(dimensions)。
-
例如:将二维数组看作一维数组
-
此一维数组中每个元素又是一个一维数组。则每个一维数组是 NumPy 的一个轴(axis)。第一个轴相当于是底层数组,第二个轴是底层数组中的数组。
-
有时可以声明axis。
-
axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;
-
axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
-
-
-
ndarray 对象属性
属性 说明 ndarray.ndim 秩,即轴的数量或维度的数量 ndarray.shape 数组的维度,对于矩阵,n 行 m 列 ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值 ndarray.dtype ndarray 对象的元素类型 ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位 ndarray.flags ndarray 对象的内存信息 ndarray.real ndarray元素的实部 ndarray.imag ndarray 元素的虚部 ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
ndarray.ndim
-
ndarray.ndim 用于返回数组的维数,等于秩。
import numpy as np a = np.arange(24) print (a.ndim) # a 现只有一个维度 # 现在调整其大小 b = a.reshape(2,4,3) # b 现在拥有三个维度 print (b.ndim) # 输出为: 1 3
ndarray.shape
-
代表数组的维度,返回值为一个元组。这个元组的长度就是ndim属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"
import numpy as np a = np.array([[1,2,3],[4,5,6]]) print (a.shape) 输出(2,3)
-
ndarray.shape 也可以用于调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]]) a.shape = (3,2) print (a) #输出结果 [[1 2] [3 4] [5 6]]
-
NumPy中的 reshape 函数也可以调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]]) b = a.reshape(3,2) print (b) #输出结果 [[1 2] [3 4] [5 6]]
-
ndarray.reshape 通常返回的是非拷贝副本,即改变返回后数组的元素,原数组对应元素的值也会改变。
import numpy as np a = np.array([[1,2,3],[4,5,6]]) b = a.reshape((6,)) b[0] = 100 print (a) print (b) #输出结果 a:array([[100, 2, 3], [ 4, 5, 6]]) b:array([100, 2, 3, 4, 5, 6])
ndarray.itemsize
-
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
-
例子
- 一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节)
- 一个元素类型为 complex32 的数组 item 属性为 4(32/8)
-
例子
import numpy as np # 数组的 dtype 为 int8(一个字节) x = np.array([1,2,3,4,5], dtype = np.int8) print (x.itemsize) # 数组的 dtype 现在为 float64(八个字节) y = np.array([1,2,3,4,5], dtype = np.float64) print (y.itemsize) # 输出: 1 8
ndarray.flags
-
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
属性 描述 C_CONTIGUOUS © 数据是在一个单一的C风格的连续段中 F_CONTIGUOUS (F) 数据是在一个单一的Fortran风格的连续段中 OWNDATA (O) 数组拥有它所使用的内存或从另一个对象中借用它 WRITEABLE (W) 数据区域可以被写入,将该值设置为 False,则数据为只读 ALIGNED (A) 数据和所有元素都适当地对齐到硬件上 UPDATEIFCOPY (U) 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 -
例子
import numpy as np x = np.array([1,2,3,4,5]) print (x.flags) # 输出结果: C_CONTIGUOUS : True F_CONTIGUOUS : True OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False