NumPy学习笔记03.数组属性

1.数组属性

numpy数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
numpy 的数组中比较重要 ndarray 对象属性有

属性说明
ndarray.ndim秩,即轴的数量或维度的数量
ndarray.shape数组的维度,对于矩阵,n行m列
ndarray.size数组元素的总个数,相当于 .shape中n * m的值
ndarray.dtypendarray对象的元素类型
ndarray.itemsizendarray对象中每个元素的大小,以字节为单位
ndarray.flagsndarray对象的内存信息
ndarray.realndarray元素的实部
ndarray.imagndarray元素的虚部
ndarray.data包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性

2.实例

ndarray.ndim 用于返回数组的维数,等于秩。

import numpy as np
a = np.arange(24)
print(a.ndim)   # a 只有一个维度
# 调整其大小
b = a.reshape(2,4,3) # 有三个维度
print(b.ndim)
1
3

ndarray.shape
ndarray.shape表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即ndim属性(秩)。比如一个二维数组,其维度表示“行数”和“列数”

ndarray.shape也可以调整数组的大小

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a.shape)
(2, 3)
# 调整数组的大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print(a)
[[1 2]
 [3 4]
 [5 6]]

NumPy 也提供了 reshape 函数来调整数组大小.

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)
[[1 2]
 [3 4]
 [5 6]]

ndarray.itemsize

ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。

import numpy as np

# 数组的 dtype 为 int8(一个字节)  
x = np.array([1,2,3,4,5], dtype = np.int8)  
print (x.itemsize)
 
# 数组的 dtype 现在为 float64(八个字节) 
y = np.array([1,2,3,4,5], dtype = np.float64)  
print (y.itemsize)
1
8

ndarray.flags

ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

属性描述
C_CONTIGUOUS ©数据是在一个单一的C风格的连续段中
F_CONTIGUOUS (F)数据是在一个单一的Fortran风格的连续段中
OWNDATA (O)数组拥有它所使用的内存或从另一个对象中借用它
WRITEABLE (W)数据区域可以被写入,将该值设置为 False,则数据为只读
ALIGNED (A)数据和所有元素都适当地对齐到硬件上
UPDATEIFCOPY (U)这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新
import numpy as np 
 
x = np.array([1,2,3,4,5])  
print (x.flags)
  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

学习参考:

### 回答1: numpy是一个高性能的科学计算库,用于处理大型数据集和矩阵运算。它是Python科学计算生态系统最重要的库之一,提供了丰富的功能和工具。 在numpy学习过程,我创建了一个名为"numpy笔记.xmind"的思维导图来总结和记录重要的概念和函数。 首先,我在思维导图列出了numpy的基本数据结构,包括多维数组(ndarray)、切片和索引。我理解了如何创建和操作这些数据结构,以及如何使用切片和索引访问数组的元素。 其次,在思维导图,我详细记录了numpy的常用函数和方法。这些函数包括数学运算(如加法、乘法和指数运算)、统计函数(如平均值、标准差和方差)和数组操作(如形状变换、拼接和切割)。对于每个函数,我还注明了其参数和用法,以便以后参考。 此外,我还在思维导图添加了numpy的广播功能和ufunc函数。广播允许我们在不同形状的数组之间进行元素级别的操作,而ufunc函数则可以对数组进行逐元素的函数调用。对于这两个功能,我记录了它们的应用场景和使用方法。 最后,我在思维导图补充了一些numpy的高级特性和应用,如随机数生成、文件IO以及与其他科学计算库(如pandas和matplotlib)的集成。这些特性和应用使numpy成为了进行数据分析和科学计算的重要工具。 通过创建和总结"numpy笔记.xmind"这个思维导图,我能够更好地理解和掌握numpy的知识。这份笔记将成为我学习和使用numpy的重要参考资料,帮助我在科学计算和数据分析的过程提高效率和准确性。 ### 回答2: numpy(Numerical Python)是Python用于进行科学计算的一个库。它提供了丰富的高性能数值计算工具,特别是对于大规模多维数组的操作。下面是关于numpy的一些笔记。 1. 数组的创建:numpy使用ndarray对象来存储多维数组。可以使用numpy.array()函数创建数组,也可以使用numpy.zeros()、numpy.ones()等函数创建特定初始值的数组。 2. 数组属性:可以使用ndarray属性来获取数组的形状、大小、数据类型等信息。例如,shape属性可以得到数组的维度大小,dtype属性可以得到数组数据类型。 3. 数组的索引和切片:可以通过索引来访问数组的元素。numpy的索引从0开始,可以使用负数表示相对于数组尾部的位置。切片可以用来获取数组的部分元素。可以使用冒号分隔切片的起始、结束和步长值。 4. 数组的运算:numpy支持对数组的逐元素运算,包括加减乘除、求幂、取余等。可以使用numpy的函数进行常见的数学运算,也可以使用ndarray对象的方法进行相应的操作。 5. 广播:numpy的广播机制可以自动处理形状不一致的数组之间的运算。广播可以使得形状不一致的数组能够按需扩展以便进行元素运算,而不需要进行明确的形状调整操作。 6. 数组的重塑和转置:可以使用reshape()函数对数组进行重新排列,改变其形状。transpose()函数可以用来进行数组的转置操作。 7. 数组的聚合操作:numpy提供了很多用于数组聚合操作的函数,例如对数组进行求和、求平均、求最大最小值等。 8. 数组的存储和读取:可以使用numpy提供的函数将数组保存到文件,也可以使用numpy的load()函数从文件加载数组。 以上是关于numpy的一些基础笔记numpy在科学计算、数据分析等领域具有广泛的应用。掌握numpy的基本操作和常用函数,能够更高效地进行数值计算和数据处理任务。 ### 回答3: numpy是一个开源的Python库,提供了高效的多维数组对象以及对数组操作的函数。笔记.xmind是一种思维导图的文件格式。结合两者,我可以将numpy的使用方法和相关概念通过思维导图的方式记录下来。 在笔记.xmind,我可以使用心主题表示numpy,然后通过子主题展开numpy的各个方面。例如,我可以创建一个子主题来介绍numpy数组对象,包括数组的创建、形状、类型等信息。另外,我还可以创建子主题来记录numpy数组操作的函数,例如数组的索引与切片操作、数组的运算操作等。在每个子主题,我可以使用节点来记录具体的代码示例,以及相关的说明和注意事项。 除了记录numpy的使用方法外,我还可以创建子主题来介绍numpy的常用概念和特性。例如,我可以创建一个子主题来介绍numpy的广播机制,以及在数组运算的应用。另外,我还可以创建子主题来介绍numpy的向量化操作和矩阵运算,以及其在科学计算的重要性。 在整个思维导图,我可以使用不同的颜色、字体和图标来区分不同的主题或节点,以便更好地组织和呈现信息。可以使用箭头来表示不同主题之间的关系,例如通过箭头表示某个主题是另一个主题的子主题或相关主题。 通过将numpy的使用方法和相关概念以思维导图的形式记录在笔记.xmind,我可以更清晰地了解和掌握numpy的知识,并且可以随时查阅和复习。这样可以帮助我更好地应用numpy进行数据分析和科学计算,并提高工作效率和代码质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZPILOTE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值