1.数组属性
numpy数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
numpy 的数组中比较重要 ndarray 对象属性有:
属性 | 说明 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n行m列 |
ndarray.size | 数组元素的总个数,相当于 .shape中n * m的值 |
ndarray.dtype | ndarray对象的元素类型 |
ndarray.itemsize | ndarray对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray元素的虚部 |
ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性 |
2.实例
ndarray.ndim 用于返回数组的维数,等于秩。
import numpy as np
a = np.arange(24)
print(a.ndim) # a 只有一个维度
# 调整其大小
b = a.reshape(2,4,3) # 有三个维度
print(b.ndim)
1
3
ndarray.shape
ndarray.shape表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即ndim属性(秩)。比如一个二维数组,其维度表示“行数”和“列数”
ndarray.shape也可以调整数组的大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a.shape)
(2, 3)
# 调整数组的大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print(a)
[[1 2]
[3 4]
[5 6]]
NumPy 也提供了 reshape 函数来调整数组大小.
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)
[[1 2]
[3 4]
[5 6]]
ndarray.itemsize
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。
import numpy as np
# 数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)
# 数组的 dtype 现在为 float64(八个字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (y.itemsize)
1
8
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
属性 | 描述 |
---|---|
C_CONTIGUOUS © | 数据是在一个单一的C风格的连续段中 |
F_CONTIGUOUS (F) | 数据是在一个单一的Fortran风格的连续段中 |
OWNDATA (O) | 数组拥有它所使用的内存或从另一个对象中借用它 |
WRITEABLE (W) | 数据区域可以被写入,将该值设置为 False,则数据为只读 |
ALIGNED (A) | 数据和所有元素都适当地对齐到硬件上 |
UPDATEIFCOPY (U) | 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 |
import numpy as np
x = np.array([1,2,3,4,5])
print (x.flags)
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
学习参考: