1022: 菜鸟和大牛
Time Limit: 1 Sec Memory Limit: 128 MBDescription
blue和AutoGerk是好朋友。他们的相同点是都喜欢研究算法,不同点是AutoGerk已是大牛而blue还是菜鸟。blue经常拿一些自以为很难的问题去问AutoGerk,想难倒他,但是每次AutoGerk都能轻而易举地做出来。就在上个礼拜的星期天下午,AutoGerk正在玩游戏,blue又拿着他的问题来了。AutoGerk一看,依然是如此简单。AutoGerk很想玩他的游戏,但是又不想冷落朋友。于是他介绍你,同样是大牛级的人物,给blue,来回答他的问题。
blue的问题如下:
一个由n行数字组成的三角形,第i行有2i-1个正整数(小于等于1000),如下:
3
7 1 4
2 4 3 6 2
8 5 2 9 3 6 2
要求你用笔从第1行画到第n(0 < n ≤ 100)行,从当前行往下画的时候只能在相邻的数字经过,也就是说,如果从一行的一个数往下画,只能选择其左下或者正下或者右下三个数中的一个(如果存在的话),把所有被画起来的数字相加,得到一个和,求能得到的最大的和的值是多少。
上例中能得到的最大的和为3 + 7 + 4 + 9 = 23.
Input
第一行,一个自然数T,表示总共给出的三角形数,对于每一个三角形,首先给出一个自然数n,表示将输入的三角形有n行。接下来有n行,第i行有2i-1个数字,
Output
对于每个三角形,输出一个数,即能得到的最大的和。
Sample Input
2
2
1
1 2 3
4
3
7 1 4
2 4 3 6 2
8 5 2 9 3 6 2
Sample Output
4
23
这是一道比较简单的动态规划题,可以模仿刘汝佳在《ACM算法入门竞赛经典》中关于动态规划的第一道例题,
区别仅在于每一行上的元素的个数不同,一个是第i行有i个元素,另一个是第i行有2i-1个元素,
还有就是一个是取两者中的最大者,一个是取三者中的最大者。
代码如下:
#include<iostream> using namespace std; const int maxn=100+5; int a[maxn][2*maxn],d[maxn][2*maxn]; int main() { int t,n,i,j,k,temp; cin>>t; while(t--) { cin>>n; for(i=1;i<=n;i++) { k=2*i-1; for(j=1;j<=k;j++) {cin>>a[i][j];} } k=2*n-1; for(j=1;j<=k;j++) {d[n][j]=a[n][j];} for(i=n-1;i>=1;i--) { k=2*i-1; for(j=1;j<=k;j++) { temp=(d[i+1][j]>d[i+1][j+1]?d[i+1][j]:d[i+1][j+1]); d[i][j]=a[i][j]+(d[i+1][j+2]>temp?d[i+1][j+2]:temp); } } cout<<d[1][1]<<endl; } return 0; }