一、技术方法共性
1. 机器学习及深度学习应用
- 广泛应用神经网络模型(如CNN、LSTM、Transformer)、集成学习(如XGBoost、随机森林)及组合模型(如CNN-LSTM-Attention)。
- 部分作品探索多模态数据融合(如文本、图像、遥感数据),提升模型精度。
2. 大数据技术应用
- 基于爬取、遥感、医疗影像等多源数据,结合数据挖掘、特征工程进行分析。
- 涉及时空数据分析(如区域经济、气候变化、交通流预测)。
3. 可解释性AI与模型优化
- 部分项目结合SHAP、LIME等工具增强模型可解释性(如金融风险归因、医疗诊断依据)。
- 优化超参数调优(如BO-DT-LSTM、TPE算法)和模型轻量化(如YOLOv8改进)。
二、应用领域聚焦
1. 经济与金融
- 主题涵盖数字经济测度(如智慧城市、产业链韧性)、金融风险预警(如系统性金融风险、碳价格预测)、政策效果评估(如大数据试验区政策影响)。
- 结合因果推断(如双重差分法、工具变量法)验证政策效应。
2. 医疗健康
- 集中于疾病预测与诊断(如阿尔茨海默病、宫颈癌、糖尿病)、医学影像分析(如CT/MRI图像分割)、公共卫生管理(如疫情传播、健康行为预测)。
- 部分项目探索个性化医疗(如用药推荐、手术风险评估)。
3. 环境与可持续发展
- 围绕碳排放与碳中和(如碳达峰路径、绿色金融)、生态监测(如水质、土壤污染)、自然灾害预测(如森林火灾、台风路径)展开。
- 结合卫星遥感数据和气候模型提升环境分析精度。
4. 社会治理与交通
- 涉及舆情分析(如网络假新闻、政务新媒体效果)、交通优化(如智能信号灯、网约车需求预测)、城市规划(如养老设施布局、充电桩选址)。
三、研究目标与创新点
1. 问题导向与实际价值
- 紧密结合国家战略需求(如“双碳”目标、乡村振兴、健康中国)和社会痛点(如金融欺诈、公共卫生资源分配)。
- 部分作品提供政策建议(如数字经济发展路径、医疗资源优化策略)。
2. 跨学科融合
- 融合统计学、计算机科学、经济学、医学等多学科方法(如经济模型与AI技术结合)。
- 典型案例:基于文本挖掘的经济政策分析、结合生物学机制的疾病预测模型。
3. 技术前沿探索
- 尝试大语言模型应用(如BERT、LLM在金融预测、文本分类中的应用)。
- 探索联邦学习、隐私计算在医疗数据中的应用(如跨机构联合建模)。
四、总结趋势
- 技术趋势:从单一模型转向多模态、跨领域融合,注重可解释性与实际落地。
- 应用趋势:聚焦国家战略与民生问题,强化数据驱动决策,推动人工智能与实体经济深度融合。
- 创新方向:结合新兴技术(如量子计算、数字孪生)和社会需求(如老龄化、数字化转型),探索统计建模的新范式。