三角函数公式整理

三角函数公式

弧、面积公式

l = α ⋅ r S = 1 2 α r 2 = 1 2 l   r \begin{aligned} l=\alpha \cdot r \qquad S=\frac12\alpha r^2=\frac12 l \, r \end{aligned} l=αrS=21αr2=21lr

升降幂公式

( sin ⁡ α + cos ⁡ α ) 2 = 1 + 2 sin ⁡ α   cos ⁡ α ( sin ⁡ α − cos ⁡ α ) 2 = 1 − 2 sin ⁡ α   cos ⁡ α (\sin\alpha + \cos\alpha)^2 = 1 + 2\sin\alpha\ \cos\alpha \qquad (\sin\alpha - \cos\alpha)^2 = 1 - 2\sin\alpha\ \cos\alpha (sinα+cosα)2=1+2sinα cosα(sinαcosα)2=12sinα cosα

诱导公式

sin ⁡ ( 2 k π + α ) = sin ⁡ α cos ⁡ ( 2 k π + α ) = cos ⁡ α tan ⁡ ( 2 k π + α ) = tan ⁡ α \begin{aligned} \sin (2k \pi + \alpha) &= \sin \alpha & \cos (2k \pi + \alpha) &= \cos \alpha & \tan (2k \pi + \alpha) &= \tan \alpha\\ \end{aligned} sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα
sin ⁡ ( π − α ) = sin ⁡ α cos ⁡ ( π − α ) = − cos ⁡ α tan ⁡ ( π − α ) = − tan ⁡ α sin ⁡ ( − α ) = − sin ⁡ α cos ⁡ ( − α ) = cos ⁡ α tan ⁡ ( − α ) = − tan ⁡ α sin ⁡ ( π + α ) = − sin ⁡ α cos ⁡ ( π + α ) = − cos ⁡ α tan ⁡ ( π + α ) = tan ⁡ α \begin{aligned} \sin ( \pi - \alpha) &= \sin \alpha & \cos ( \pi - \alpha) &= -\cos \alpha & \tan ( \pi - \alpha) &= -\tan \alpha\\ \sin ( - \alpha) &= -\sin \alpha & \cos ( - \alpha) &= \cos \alpha & \tan ( - \alpha) &= -\tan \alpha\\ \sin ( \pi + \alpha) &= -\sin \alpha & \cos ( \pi + \alpha) &= -\cos \alpha & \tan ( \pi + \alpha) &= \tan \alpha\\ \end{aligned} sin(πα)sin(α)sin(π+α)=sinα=sinα=sinαcos(πα)cos(α)cos(π+α)=cosα=cosα=cosαtan(πα)tan(α)tan(π+α)=tanα=tanα=tanα
sin ⁡ ( π 2 − α ) = cos ⁡ α sin ⁡ ( π 2 + α ) = cos ⁡ α cos ⁡ ( π 2 − α ) = sin ⁡ α cos ⁡ ( π 2 + α ) = − sin ⁡ α tan ⁡ ( π 2 − α ) = cot ⁡ α tan ⁡ ( π 2 + α ) = − cot ⁡ α cot ⁡ ( π 2 − α ) = tan ⁡ α cot ⁡ ( π 2 + α ) = − tan ⁡ α \begin{aligned} \sin ( \frac\pi2 - \alpha) &= \cos \alpha & \sin ( \frac\pi2 + \alpha) &= \cos \alpha &\\ \cos ( \frac\pi2 - \alpha) &= \sin \alpha & \cos ( \frac\pi2 + \alpha) &= -\sin \alpha &\\ \tan ( \frac\pi2 - \alpha) &= \cot \alpha & \tan ( \frac\pi2 + \alpha) &= -\cot \alpha &\\ \cot ( \frac\pi2 - \alpha) &= \tan \alpha & \cot ( \frac\pi2 + \alpha) &= -\tan \alpha &\\ \end{aligned} sin(2πα)cos(2πα)tan(2πα)cot(2πα)=cosα=sinα=cotα=tanαsin(2π+α)cos(2π+α)tan(2π+α)cot(2π+α)=cosα=sinα=cotα=tanα
sin ⁡ ( 3 π 2 − α ) = − cos ⁡ α sin ⁡ ( 3 π 2 + α ) = − cos ⁡ α cos ⁡ ( 3 π 2 − α ) = − sin ⁡ α cos ⁡ ( 3 π 2 + α ) = sin ⁡ α tan ⁡ ( 3 π 2 − α ) = − cot ⁡ α tan ⁡ ( 3 π 2 + α ) = − cot ⁡ α cot ⁡ ( 3 π 2 − α ) = tan ⁡ α cot ⁡ ( 3 π 2 + α ) = − tan ⁡ α \begin{aligned} \sin ( \frac{3\pi}2 - \alpha) &= -\cos \alpha & \sin ( \frac{3\pi}2 + \alpha) &= -\cos \alpha &\\ \cos ( \frac{3\pi}2 - \alpha) &= -\sin \alpha & \cos ( \frac{3\pi}2 + \alpha) &= \sin \alpha &\\ \tan ( \frac{3\pi}2 - \alpha) &= -\cot \alpha & \tan ( \frac{3\pi}2 + \alpha) &= -\cot \alpha &\\ \cot ( \frac{3\pi}2 - \alpha) &= \tan \alpha & \cot ( \frac{3\pi}2 + \alpha) &= -\tan \alpha &\\ \end{aligned} sin(23πα)cos(23πα)tan(23πα)cot(23πα)=cosα=sinα=cotα=tanαsin(23π+α)cos(23π+α)tan(23π+α)cot(23π+α)=cosα=sinα=cotα=tanα

两角和差公式

sin ⁡ ( α + β ) = sin ⁡ α   cos ⁡ β + cos ⁡ α   sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α   cos ⁡ β − cos ⁡ α   sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α   cos ⁡ β − sin ⁡ α   sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α   cos ⁡ β + sin ⁡ α   sin ⁡ β tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α   tan ⁡ β tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α   tan ⁡ β \begin{aligned} \sin (\alpha + \beta) &= \sin\alpha\ \cos\beta + \cos\alpha\ \sin\beta & \sin (\alpha - \beta) &= \sin\alpha\ \cos\beta - \cos\alpha\ \sin\beta \\ \cos (\alpha + \beta) &= \cos\alpha\ \cos\beta - \sin\alpha\ \sin\beta & \cos (\alpha - \beta) &= \cos\alpha\ \cos\beta + \sin\alpha\ \sin\beta \\ \tan (\alpha + \beta) &= \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\ \tan\beta} & \tan (\alpha - \beta) &= \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\ \tan\beta} \\ \end{aligned} sin(α+β)cos(α+β)tan(α+β)=sinα cosβ+cosα sinβ=cosα cosβsinα sinβ=1tanα tanβtanα+tanβsin(αβ)cos(αβ)tan(αβ)=sinα cosβcosα sinβ=cosα cosβ+sinα sinβ=1+tanα tanβtanαtanβ

倍角公式

sin ⁡ 2 α = 2 sin ⁡ α   cos ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \begin{aligned} \sin 2\alpha &= 2\sin\alpha\ \cos\alpha \\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha-1 = 1-2\sin^2\alpha \\ \tan 2\alpha &= \frac{2\tan\alpha}{1 - \tan^2\alpha} \\ \end{aligned} sin2αcos2αtan2α=2sinα cosα=cos2αsin2α=2cos2α1=12sin2α=1tan2α2tanα

半角公式

sin ⁡ α 2 = ± 1 − cos ⁡ α 2 cos ⁡ α 2 = ± 1 + cos ⁡ α 2 tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α tan ⁡ α 2 = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α \begin{aligned} \sin \frac\alpha2 &= \pm \sqrt{\frac{1 - \cos\alpha}{2}} \\ \cos \frac\alpha2 &= \pm \sqrt{\frac{1 + \cos\alpha}{2}} \\ \tan \frac\alpha2 &= \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} \\ \tan \frac\alpha2 &= \frac{\sin\alpha}{1 + \cos\alpha}= \frac{1 - \cos\alpha}{\sin\alpha} \\ \end{aligned} sin2αcos2αtan2αtan2α=±21cosα =±21+cosα =±1+cosα1cosα =1+cosαsinα=sinα1cosα

积化和差

sin ⁡ α   cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α   sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α   cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α   sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{aligned} \sin\alpha\ \cos\beta&=\frac12\left[\sin(\alpha+\beta)+\sin(\alpha-\beta)\right] & \cos\alpha\ \sin\beta&=\frac12\left[\sin(\alpha+\beta)-\sin(\alpha-\beta)\right] \\ \cos\alpha\ \cos\beta&=\frac12\left[\cos(\alpha+\beta)+\cos(\alpha-\beta)\right] & \sin\alpha\ \sin\beta&=-\frac12\left[\cos(\alpha+\beta)-\cos(\alpha-\beta)\right] \\ \end{aligned} sinα cosβcosα cosβ=21[sin(α+β)+sin(αβ)]=21[cos(α+β)+cos(αβ)]cosα sinβsinα sinβ=21[sin(α+β)sin(αβ)]=21[cos(α+β)cos(αβ)]

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2   sin ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 sin ⁡ α + β 2   sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2   cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 cos ⁡ α + β 2   cos ⁡ α − β 2 \begin{aligned} \sin\alpha + \sin\beta&=2\sin\frac{\alpha+\beta}2\ \sin\frac{\alpha-\beta}2 & \sin\alpha - \sin\beta&=2\sin\frac{\alpha+\beta}2\ \sin\frac{\alpha-\beta}2 \\ \cos\alpha + \cos\beta&=2\cos\frac{\alpha+\beta}2\ \cos\frac{\alpha-\beta}2 & \cos\alpha - \cos\beta&=-2\cos\frac{\alpha+\beta}2\ \cos\frac{\alpha-\beta}2 \\ \end{aligned} sinα+sinβcosα+cosβ=2sin2α+β sin2αβ=2cos2α+β cos2αβsinαsinβcosαcosβ=2sin2α+β sin2αβ=2cos2α+β cos2αβ

辅助角公式

a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + φ ) ( cos ⁡ φ = a a 2 + b 2 ,   sin ⁡ φ = b a 2 + b 2 ,   tan ⁡ φ = b a ) a\sin\alpha + b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi)\\ \left(\cos\varphi=\frac a{\sqrt{a^2+b^2}}, \ \sin\varphi=\frac b{\sqrt{a^2+b^2}}, \ \tan\varphi=\frac ba\right) asinα+bcosα=a2+b2 sin(α+φ)(cosφ=a2+b2 a, sinφ=a2+b2 b, tanφ=ab)

三倍角公式

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α = 4 sin ⁡ α   sin ⁡ ( π 3 − α )   sin ⁡ ( π 3 + α ) cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α = 4 cos ⁡ α   cos ⁡ ( π 3 − α )   cos ⁡ ( π 3 + α ) cos ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α = 4 tan ⁡ α   tan ⁡ ( π 3 − α )   tan ⁡ ( π 3 + α ) \begin{aligned} \sin 3\alpha &= 3\sin\alpha - 4\sin^3\alpha = 4\sin\alpha\ \sin(\frac\pi3 - \alpha)\ \sin(\frac\pi3 + \alpha) \\ \cos 3\alpha &= 4\cos^3\alpha - 3\cos\alpha = 4\cos\alpha\ \cos(\frac\pi3 - \alpha)\ \cos(\frac\pi3 + \alpha) \\ \cos 3\alpha &= \frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha} = 4\tan\alpha\ \tan(\frac\pi3 - \alpha)\ \tan(\frac\pi3 + \alpha) \\ \end{aligned} sin3αcos3αcos3α=3sinα4sin3α=4sinα sin(3πα) sin(3π+α)=4cos3α3cosα=4cosα cos(3πα) cos(3π+α)=13tan2α3tanαtan3α=4tanα tan(3πα) tan(3π+α)

正余切和差

tan ⁡ α + cot ⁡ α = 1 sin ⁡ α   cos ⁡ α = 2 sin ⁡ 2 α tan ⁡ α − cot ⁡ α = sin ⁡ 2 α   − cos ⁡ 2 α sin ⁡ α   cos ⁡ α = − 2   cos ⁡ 2 α sin ⁡ 2 α = − 2   cot ⁡ 2 α \begin{aligned} \tan\alpha + \cot\alpha &= \frac1{\sin\alpha\ \cos\alpha} = \frac2{\sin 2\alpha}\\ \tan\alpha - \cot\alpha &= \frac{\sin^2\alpha\ - \cos^2\alpha}{\sin\alpha\ \cos\alpha} = \frac{-2\ \cos{2\alpha}}{\sin 2\alpha} = -2\ \cot{2\alpha}\\ \end{aligned} tanα+cotαtanαcotα=sinα cosα1=sin2α2=sinα cosαsin2α cos2α=sin2α2 cos2α=2 cot2α

万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \begin{aligned} \sin\alpha &= \frac{2\tan\displaystyle\frac{\alpha}{2}}{1 + \tan^2\displaystyle\frac{\alpha}{2}} & \cos\alpha &= \frac{1 - \tan^2\displaystyle\frac{\alpha}{2}}{1 + \tan^2\displaystyle\frac{\alpha}{2}} & \tan\alpha &= \frac{2\tan\displaystyle\frac{\alpha}{2}}{1 - \tan^2\displaystyle\frac{\alpha}{2}} \\ \end{aligned} sinα=1+tan22α2tan2αcosα=1+tan22α1tan22αtanα=1tan22α2tan2α

降幂公式

sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 sin ⁡ α   cos ⁡ α = sin ⁡ 2 α 2 \begin{aligned} \sin^2\alpha &= \frac{1 - \cos2\alpha}2 & \cos^2\alpha &= \frac{1 + \cos2\alpha}2 & \sin\alpha\ \cos\alpha &= \frac{\sin 2\alpha}2 \\ \end{aligned} sin2α=21cos2αcos2α=21+cos2αsinα cosα=2sin2α

三角形恒等式

在三角形 A B C ABC ABC中, A + B + C = 2 π A + B + C = 2\pi A+B+C=2π A 、 B 、 C ≠ π 2 A、B、C\not=\displaystyle\frac\pi2 ABC=2π
sin ⁡ A 2 = cos ⁡ B + C 2 tan ⁡ A 2 = cot ⁡ B + C 2 \sin\frac A2 = \cos\frac{B + C}2 \qquad \tan\frac A2 = \cot\frac{B + C}2 sin2A=cos2B+Ctan2A=cot2B+C

正余弦和

sin ⁡ A + sin ⁡ B + sin ⁡ C = 4 cos ⁡ A   cos ⁡ B   cos ⁡ C cos ⁡ A + cos ⁡ B + cos ⁡ C = 1 + 4 cos ⁡ A 2   cos ⁡ B 2   cos ⁡ C 2 \begin{aligned} \sin A + \sin B + \sin C &= 4\cos A\ \cos B\ \cos C\\ \cos A + \cos B + \cos C &= 1 + 4\cos \frac A2\ \cos \frac B2\ \cos \frac C2 \end{aligned} sinA+sinB+sinCcosA+cosB+cosC=4cosA cosB cosC=1+4cos2A cos2B cos2C

正余弦平方和

sin ⁡ 2 A + sin ⁡ 2 B + sin ⁡ 2 C = 2 + 2 cos ⁡ A   cos ⁡ B   cos ⁡ C cos ⁡ 2 A + cos ⁡ 2 B + cos ⁡ 2 C = 1 − 2 cos ⁡ A   cos ⁡ B   cos ⁡ C \begin{aligned} \sin^2 A + \sin^2 B + \sin^2 C &= 2 + 2\cos A\ \cos B\ \cos C\\ \cos^2 A + \cos^2 B + \cos^2 C &= 1- 2\cos A\ \cos B\ \cos C \end{aligned} sin2A+sin2B+sin2Ccos2A+cos2B+cos2C=2+2cosA cosB cosC=12cosA cosB cosC

正余弦半角平方和

sin ⁡ 2 A 2 + sin ⁡ 2 B 2 + sin ⁡ 2 C 2 = 1 − 2 cos ⁡ A 2   cos ⁡ B 2   cos ⁡ C 2 cos ⁡ 2 A 2 + cos ⁡ 2 B 2 + cos ⁡ 2 C 2 = 2 + 2 sin ⁡ A 2   sin ⁡ B 2   sin ⁡ C 2 \begin{aligned} \sin^2 \frac A2 + \sin^2 \frac B2 + \sin^2 \frac C2 &= 1 - 2\cos \frac A2\ \cos \frac B2\ \cos \frac C2\\ \cos^2 \frac A2 + \cos^2 \frac B2 + \cos^2 \frac C2 &= 2 + 2\sin \frac A2\ \sin \frac B2\ \sin \frac C2 \end{aligned} sin22A+sin22B+sin22Ccos22A+cos22B+cos22C=12cos2A cos2B cos2C=2+2sin2A sin2B sin2C

正余切和积

tan ⁡ A + tan ⁡ B + tan ⁡ C = tan ⁡ A   tan ⁡ B   tan ⁡ C cot ⁡ A 2 + cot ⁡ B 2 + cot ⁡ C 2 = cot ⁡ A 2   cot ⁡ B 2   cot ⁡ C 2 \tan A + \tan B + \tan C = \tan A\ \tan B\ \tan C\\ \cot \frac A2 + \cot \frac B2 + \cot \frac C2 = \cot \frac A2\ \cot \frac B2\ \cot \frac C2 tanA+tanB+tanC=tanA tanB tanCcot2A+cot2B+cot2C=cot2A cot2B cot2C

n倍角公式

切比雪夫多项式 g n + 1 ( x ) = 2 x   g n ( x ) − g n − 1 ( x ) g_{n+1}(x)=2x\ g_n(x)-g_{n-1}(x) gn+1(x)=2x gn(x)gn1(x) 结论
cos ⁡ 2 α = 2 cos ⁡ 2 α − 1 cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α cos ⁡ 4 α = 8 cos ⁡ 4 α − 8 cos ⁡ 2 α + 1 cos ⁡ 5 α = 16 cos ⁡ 5 α − 20 cos ⁡ 3 α + 5 cos ⁡ α \begin{aligned} \cos 2\alpha &= 2\cos^2\alpha - 1\\ \cos 3\alpha &= 4\cos^3\alpha - 3\cos\alpha\\ \cos 4\alpha &= 8\cos^4\alpha - 8\cos^2\alpha + 1\\ \cos 5\alpha &= 16\cos^5\alpha - 20\cos^3\alpha + 5\cos\alpha\\ \end{aligned} cos2αcos3αcos4αcos5α=2cos2α1=4cos3α3cosα=8cos4α8cos2α+1=16cos5α20cos3α+5cosα

正弦定理

a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R \frac a{\sin A} = \frac b{\sin B} = \frac c{\sin C} = 2R sinAa=sinBb=sinCc=2R

三角形面积公式

S Δ = 1 2   a b   sin ⁡ C = 1 2   a c   sin ⁡ B = 1 2   b c   sin ⁡ A S Δ = p   ( p − a ) ( p − b ) ( p − c ) p = a + b + c 2 S Δ = 1 4 [ a 2   c 2 − ( a 2 + b 2 − c 2 2 ) 2 ] S Δ = a b c 4 R = 2 R 2   sin ⁡ A   sin ⁡ B   sin ⁡ C R 为 三 角 形 外 接 圆 半 径 S Δ = 1 2   r   ( a + b + c ) r 为 三 角 形 内 切 圆 半 径 \begin{aligned} S_\Delta &= \frac12\,ab\,\sin C = \frac12\,ac\,\sin B = \frac12\,bc\,\sin A\\ S_\Delta &= \sqrt{p\,(p-a)(p-b)(p-c)} & &p=\frac{a+b+c}2\\ S_\Delta &= \sqrt{\frac14\left[a^2\,c^2-(\frac{a^2+b^2-c^2}2)^2\right]}\\ S_\Delta &= \frac{abc}{4R} = 2R^2\,\sin A\,\sin B\,\sin C & R&为三角形外接圆半径\\ S_\Delta &= \frac12\,r\,(a+b+c) & r&为三角形内切圆半径\\ \end{aligned} SΔSΔSΔSΔSΔ=21absinC=21acsinB=21bcsinA=p(pa)(pb)(pc) =41[a2c2(2a2+b2c2)2] =4Rabc=2R2sinAsinBsinC=21r(a+b+c)Rrp=2a+b+c

余弦定理

a 2 = b 2 + c 2 − 2   b c cos ⁡ A cos ⁡ A = b 2 + c 2 − a 2 2 b c b 2 = a 2 + c 2 − 2   a c cos ⁡ B ⇔ cos ⁡ B = a 2 + c 2 − b 2 2 a c c 2 = a 2 + b 2 − 2   a b cos ⁡ C cos ⁡ C = a 2 + b 2 − c 2 2 a b \begin{aligned} a^2=b^2+c^2-2\,bc\cos A & & \cos A=\frac{b^2+c^2-a^2}{2bc}\\ b^2=a^2+c^2-2\,ac\cos B & \qquad \Leftrightarrow & \cos B=\frac{a^2+c^2-b^2}{2ac}\\ c^2=a^2+b^2-2\,ab\cos C & & \cos C=\frac{a^2+b^2-c^2}{2ab}\\ \end{aligned} a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosCcosA=2bcb2+c2a2cosB=2aca2+c2b2cosC=2aba2+b2c2

三角形形状判断

cos ⁡ A   cos ⁡ B   cos ⁡ C < 0 ⇔ 钝 角 ⇔ tan ⁡ A   tan ⁡ B < 1 cos ⁡ A   cos ⁡ B   cos ⁡ C = 0 ⇔ 直 角 ⇔ tan ⁡ A   tan ⁡ B = 1 cos ⁡ A   cos ⁡ B   cos ⁡ C > 0 ⇔ 锐 角 ⇔ tan ⁡ A   tan ⁡ B > 1 \cos A \,\cos B \,\cos C < 0 \quad\Leftrightarrow\quad 钝角 \quad\Leftrightarrow\quad \tan A\, \tan B < 1\\ \cos A \,\cos B \,\cos C = 0 \quad\Leftrightarrow\quad 直角 \quad\Leftrightarrow\quad \tan A\, \tan B = 1\\ \cos A \,\cos B \,\cos C > 0 \quad\Leftrightarrow\quad 锐角 \quad\Leftrightarrow\quad \tan A\, \tan B > 1\\ cosAcosBcosC<0tanAtanB<1cosAcosBcosC=0tanAtanB=1cosAcosBcosC>0tanAtanB>1

三角函数性质

正弦、余弦、正切性质

y = sin ⁡ x y=\sin x y=sinx y = cos ⁡ x y=\cos x y=cosx y = tan ⁡ x y=\tan x y=tanx
定义域 R R R R R R$\left{x
值域 [ − 1 , 1 ] \left[-1,1\right] [1,1] [ − 1 , 1 ] \left[-1,1\right] [1,1] R R R
最小正周期 T = 2 π T=2\pi T=2π T = 2 π T=2\pi T=2π T = π T=\pi T=π
奇偶性奇函数偶函数奇函数
对称中心 ( k π , 0 ) \left(k\pi,0\right) (kπ,0) ( k π + π 2 , 0 ) \left(k\pi+\frac\pi2,0\right) (kπ+2π,0) ( k π 2 , 0 ) \left(\frac{k\pi}2,0\right) (2kπ,0)
对称轴 x = k π + π 2 x=k\pi+\frac\pi2 x=kπ+2π x = k π x=k\pi x=kπ
最大值 x = 2 k π + π 2 x=2k\pi+\frac\pi2 x=2kπ+2π
y m a x = 1 y_{max}=1 ymax=1
x = 2 k π x=2k\pi x=2kπ
y m a x = 1 y_{max}=1 ymax=1
最小值 x = 2 k π − π 2 x=2k\pi-\frac\pi2 x=2kπ2π
y m i n = − 1 y_{min}=-1 ymin=1
x = 2 k π + π x=2k\pi+\pi x=2kπ+π
y m i n = − 1 y_{min}=-1 ymin=1
单调增区间 [ 2 k π − π 2 , 2 k π + π 2 ] \left[2k\pi-\frac\pi2,2k\pi+\frac\pi2\right] [2kπ2π,2kπ+2π] [ 2 k π − π , 2 k π ] \left[2k\pi-\pi,2k\pi\right] [2kππ,2kπ] ( k π − π 2 , k π + π 2 ) \left(k\pi-\frac\pi2,k\pi+\frac\pi2\right) (kπ2π,kπ+2π)
单调减区间 [ 2 k π + π 2 , 2 k π + 3 π 2 ] \left[2k\pi+\frac\pi2,2k\pi+\frac{3\pi}2\right] [2kπ+2π,2kπ+23π] [ 2 k π , 2 k π + π ] \left[2k\pi,2k\pi+\pi\right] [2kπ,2kπ+π]
y = A sin ⁡ ( ω x + φ ) y=A \sin(\omega x+\varphi) y=Asin(ωx+φ) y = A cos ⁡ ( ω x + φ ) y=A \cos(\omega x+\varphi) y=Acos(ωx+φ) y = A tan ⁡ ( ω x + φ ) y=A \tan(\omega x+\varphi) y=Atan(ωx+φ)
最小正周期 2 π ∣ ω ∣ \displaystyle\frac{2\pi}{\mid\omega\mid} ω2π 2 π ∣ ω ∣ \displaystyle\frac{2\pi}{\mid\omega\mid} ω2π π ∣ ω ∣ \displaystyle\frac{\pi}{\mid\omega\mid} ωπ
对称轴 k π + π 2 − φ ω \displaystyle\frac{k\pi+\frac\pi 2-\varphi}{\omega} ωkπ+2πφ k π − φ ω \displaystyle\frac{k\pi-\varphi}{\omega} ωkπφ
对称中心 ( k π − φ ω , 0 ) \left(\displaystyle\frac{k\pi-\varphi}\omega,0\right) (ωkπφ,0) ( k π + π 2 − φ ω , 0 ) \left(\displaystyle\frac{k\pi+\frac\pi 2-\varphi}\omega,0\right) (ωkπ+2πφ,0) ( k 2 π − φ ω , 0 ) \left(\displaystyle\frac{\frac k2 \pi-\varphi}\omega,0\right) (ω2kπφ,0)
  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值