向量公式整理

向量的表示

a ⃗ = O A ⟶ = x   i ⃗ + y   j ⃗ \vec{a}=\stackrel{\longrightarrow}{OA}=x\,\vec{i}+y\,\vec{j} a =OA=xi +yj

向量基本定理

e 1 ⃗   \vec{e_1}\, e1   e 2 ⃗   \,\vec{e_2}\, e2 为平面上两个不平行的向量,对于该平面上任意向量   a ⃗ \,\vec{a} a ,仅存在唯一的一对   λ   \,\lambda\, λ   μ   \,\mu\, μ使得:
a ⃗ = λ   e 1 ⃗ + μ   e 2 ⃗ \vec{a}=\lambda\,\vec{e_1}+\mu\,\vec{e_2} a =λe1 +μe2

向量的坐标表示

坐标分解

a ⃗ = ( x , y ) \vec{a}=(x, y) a =(x,y)

线性运算的坐标表示

( x 1 , y 1 ) ± ( x 2 , y 2 ) = ( x 1 ± x 2 , y 1 ± y 2 ) λ   ( x , y ) = ( λ x , λ y ) \begin{aligned} (x_1, y_1)\pm(x_2, y_2)&=(x_1\pm x_2, y_1\pm y_2)\\ \lambda\,(x, y)&=(\lambda x, \lambda y) \end{aligned} (x1,y1)±(x2,y2)λ(x,y)=(x1±x2,y1±y2)=(λx,λy)
∣ a ⃗ ∣ = ∣ ( x , y ) ∣ = x 2 + y 2 \big|\vec{a}\big|=\big|(x, y)\big|=\sqrt{x^2+y^2} a =(x,y)=x2+y2
a ⃗ ⋅ b ⃗ = x 1 x 2 + y 1 y 2 \vec{a}\cdot\vec{b}=x_1x_2+y_1y_2 a b =x1x2+y1y2
cos ⁡ < a ⃗ , b ⃗ > = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 ⋅ x 2 2 + y 2 2 \cos\left<\vec{a}, \vec{b}\right>=\frac{\vec{a}\cdot\vec{b}}{\big|\vec{a}\big|\big|\vec{b}\big|} =\frac{x_1x_2+y_1y_2}{\sqrt{x_1^2+y_1^2}\cdot\sqrt{x_2^2+y_2^2}} cosa ,b =a b a b =x12+y12 x22+y22 x1x2+y1y2

向量位置关系

a ⃗ = ( x a , y a ) b ⃗ = ( x b , y b ) a ⃗   /  ⁣ /   b ⃗ ⇔ x a   y b = x b   y a a ⃗   ⊥   b ⃗ ⇔ x a   x b + y b   y a = 0 \begin{aligned} \vec{a} &= (x_a, y_a)\\ \vec{b} &= (x_b, y_b)\\ \vec{a} \, /\!/ \, \vec{b} \quad&\Leftrightarrow\quad x_a\,y_b=x_b\,y_a\\ \vec{a} \, \bot \, \vec{b} \quad&\Leftrightarrow\quad x_a\,x_b + y_b\,y_a = 0 \end{aligned} a b a //b a b =(xa,ya)=(xb,yb)xayb=xbyaxaxb+ybya=0

向量的应用

定比分点公式

P   P\, P为直线   P 1 P 2   \,P_1P_2\, P1P2上一点,且   P 1 P ⟶ = λ P P 2 ⟶   \,\stackrel{\longrightarrow}{P_1P}=\lambda\stackrel{\longrightarrow}{PP_2}\, P1P=λPP2 P   P\, P点坐标   ( x , y ) \,(x,y) (x,y)
{ x − x 1 = λ   ( x 2 − x ) y − y 1 = λ   ( y 2 − y ) ⇒ { x = x 1 + λ   x 2 1 + λ y = y 1 + λ   y 2 1 + λ \left\{ \begin{aligned} x-x_1 &= \lambda\,(x_2-x)\\\\ y-y_1 &= \lambda\,(y_2-y) \end{aligned} \right. \quad\Rightarrow\quad \left\{ \begin{aligned} x &= \displaystyle\frac{x_1+\lambda\,x_2}{1+\lambda}\\ y &= \displaystyle\frac{y_1+\lambda\,y_2}{1+\lambda} \end{aligned} \right. xx1yy1=λ(x2x)=λ(y2y)xy=1+λx1+λx2=1+λy1+λy2

特殊地,当   P   \,P\, P   P 1 P 2   \,P_1P_2\, P1P2中点时,其坐标为:
{ x = x 1 + x 2 2 y = y 1 + y 2 2 \left\{ \begin{aligned} x &= \displaystyle\frac{x_1+x_2}{2}\\ y &= \displaystyle\frac{y_1+y_2}{2} \end{aligned} \right. xy=2x1+x2=2y1+y2

推广

  △ A B C   \,\triangle ABC\, ABC中,重心   G   \,G\, G坐标为:
{ x = x 1 + x 2 + x 3 3 y = y 1 + y 2 + y 3 3 \left\{ \begin{aligned} x &= \displaystyle\frac{x_1+x_2+x_3}{3}\\ y &= \displaystyle\frac{y_1+y_2+y_3}{3} \end{aligned} \right. xy=3x1+x2+x3=3y1+y2+y3
  △ A B C   \,\triangle ABC\, ABC中,设   C A ⟶ = a ⃗ = ( x 1 , y 1 ) \,\stackrel{\longrightarrow}{CA}=\vec{a}=(x_1, y_1) CA=a =(x1,y1)   C B ⟶ = b ⃗ = ( x 2 , y 2 ) \,\stackrel{\longrightarrow}{CB}=\vec{b}=(x_2, y_2) CB=b =(x2,y2) △ A B C   \triangle ABC\, ABC面积为   S \,S S,则:
S = ∣ a ⃗ ∣ 2 ∣ b ⃗ ∣ 2 − ( a ⃗ ⋅ b ⃗ ) 2 S = 1 2 ∣ x 1 y 2 − x 2 y 1 ∣ \begin{aligned} S&=\sqrt{\big|\vec{a}\big|^2\big|\vec{b}\big|^2-(\vec{a}\cdot\vec{b})^2}\\ S&=\frac12\big|x_1y_2-x_2y_1\big| \end{aligned} SS=a 2b 2(a b )2 =21x1y2x2y1
  ▱ A B C D   \,▱ABCD\, ABCD中,对角线的平方和等于各边平方和,即:
A C 2 + B D 2 = A B 2 + B C 2 + C D 2 + D A 2 = 2 A B 2 + 2 B C 2 \begin{aligned} AC^2+BD^2&=AB^2+BC^2+CD^2+DA^2\\ &=2AB^2+2BC^2 \end{aligned} AC2+BD2=AB2+BC2+CD2+DA2=2AB2+2BC2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值