题目:
A - Largest Rectangle in a Histogram
题意:
在一条水平线上有n个宽为1的矩形,求包含于这些矩形的最大子矩形面积。
分析:
当下一个矩形的高度低于上一个矩形时,如果想要利用这个矩形来求子矩形面积,上一个矩形所高出的部分必然不会被利用到,因此可以维护一个单调递增的单调栈,依次将矩形入栈,如果矩形高度小于栈顶的矩形的高度,则取出栈顶,计算以栈顶矩形高度乘上其累计的宽度所形成的最大子矩形的面积,并将其宽度累计到下一个矩形上,直到栈顶矩形高度小于入栈的矩形高度。为了防止栈种有残留的矩形,在最后可以加上一个高度为0的矩形。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,s[100010],a[100010],l[100010];
int main()
{
while(scanf("%d",&n) && n){
for (int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
a[n+1]=0;
int p=0;
int maxx=0;
for (int i=1;i<=n+1;i++){
if (a[i]>s[p]){
s[++p]=a[i];
l[p]=1;
}
else{
int len=0;
while(s[p]>a[i]){
len=len+l[p];
maxx=max(maxx,len*s[p]);
p--;
}
s[++p]=a[i];
l[p]=len+1;
}
}
printf("%d\n",maxx);
}
}