素数(质数)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数
判断素数
第一种:就是暴力解法普通查找:遍历2-n的值找出是否存在因数
def IsPrime1(num):
if num == 2 or num == 3:
return 1
else:
for i in range(2, num):
if num % i == 0:
return 0
else:
return 1
第二种:在第一种的基础上缩短遍历的值的数量
如果一个自然数是非素数,那么它的所有因数(除1和本身)中,必存在某个因数小于等于其开方值
那么我们的任务就是遍历2-sqrt(n),如果存在因数,那么是非素数,如果不存在因数,即该数位素数。
import math
def IsPrime2(num):
if num == 2 or num == 3:
return 1
else:
n = int(math.sqrt(num))
for i in range(2, n + 1):# range(start,stop[,step])中的stop值不在遍历范围内
if num % i == 0:
return 0
else:
return 1
第三种:在第二种的基础上继续减少遍历值
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;
简单证明一下:大于5的自然数:....6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6x+6,6x+7...
不在6x(即6的倍数)相邻两侧的数为6x+2,6x+3,6x+4,可以被2,3整除,显然不是素数,可以将这一大部分值排除掉。
注意:在6x相邻两侧的值不一定是素数。例如35...
接下来的任务就是判断6x相邻两侧的数:此时判断质数可以6个为单元快进,即将方法(2)循环中step设为6,加快判断速度。
原因是:假如要判定的数为n,则n必定是6x-1或6x+1的形式,对于循环中6i-1,6i,6i+1,6i+2,6i+3,6i+4,其中如果n能被 6i,6i+2,6i+4整除,则n至少得是一个偶数,但是6x-1或6x+1的形式明显是一个奇数,故不成立;
另外,如果n能被6i+3整除,则n至少能被3整除,但是6x能被3整除,故6x-1或6x+1(即n)不可能被3整除,故不成立。
综上,循环中只需要考虑6i-1和6i+1的情况,即循环的步长可以定为6,每次判断循环变量k和k+2的情况即可。
import math
def IsPrime3(num):
if num == 2 or num == 3:
return 1
if num % 6 != 1 and num % 6 != 5:
return 0
n = int(math.sqrt(num))
for i in range(5, n + 1, 6):
if num % i == 0 or num % (i + 2) == 0:
return 0
else:
return 1
以上三种是比较经典的三种判断素数方法
查找素数:
第一种:查找一定范围内的所有素数,直接遍历,找出符合条件的数并打印(或者存进一个数组里面)
def PrintAllPrime(n):
for s in range(2,n+1):
if IsPrime1(s) == 1:
print(s)
第二种:我们一起学习一种高级的思想:生成器构造筛选
原理上比较简单:构造一个大概的序列,从序列中遍历筛选不符合的,剩下的即为素数
实现上:构造一个可以包括所有素数的序列,然后定义一个筛选函数对其进行元素移除;定义一个生成器,不断的生成下一个素数,这样就可以根据自己的需要生成一定范围内的素数
def odd_iter():
n = 1
while True:
n = n + 2
yield n # 返回一个Iterator
def not_divisible(n):
return lambda x: x % n > 0
def primes():
yield 2
it = odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(not_divisible(n), it) # 构造新序列
# 打印10以内的素数:
m=10
for n in primes():
if n <= m:
print(n)
else:
break