JZOJ-senior-5931. 【NOIP2018模拟10.27】冒泡排序

Time Limits: 1000 ms Memory Limits: 262144 KB

Description

在这里插入图片描述
冒泡排序的交换次数被定义为交换过程的执行次数。

小 S 开始专注于研究⻓度为 n 的排列,他想知道,在你运气足够好的情况下(即每次冒泡排序的交换次数都是可能的最少交换次数,仿佛有上帝之手在操控),对于一个等概率随机的长度为n 的排列,进行这样的冒泡排序的期望交换次数是多少?

Input

从文件 inverse.in 中读入数据。
输入第一行包含一个正整数 T ,表示数据组数。
对于每组数据,第一行有一个正整数,保证 n ≤ 10^7 。

Output

输出到文件 inverse.out 中。
输出共 T 行,每行一个整数。
对于每组数据,输出一个整数,表示答案对 998244353 取模的结果。

Sample Input

2
2
4

样例 2
见选手目录下的 inverse/inverse2.in 与 inverse/inverse2.ans 。

Sample Output

499122177
415935149
在这里插入图片描述

Data Constraint

在这里插入图片描述

Solution

  • 看错题……找不到规律真是令人心态崩了
  • 题目大意是对于一个 n n n 的排列,它的贡献就是将它交换有序的最少次数,求所有排列的期望次数
  • 实在想不出来不妨找规律,如Code1&Code2(求逆元方式不同)
  • 找规律的方法我太菜不会证明,那就讲另一种方法吧(Code3)
  • f i f_i fi 表示前 i i i 个数的期望次数,考虑将第 i i i 个数放到哪个位置
  • 直接放在第 i i i 位,无需交换,直接加上 f i − 1 f_{i-1} fi1
  • 不放在第 i i i 位,那么它有 i − 1 i-1 i1 种放法,另外 i − 1 i-1 i1 个数有 ( i − 1 ) ! (i-1)! (i1)! 种方案
  • 所以一共有 ( i − 1 ) ∗ ( i − 1 ) ! (i-1)*(i-1)! (i1)(i1)! 种方案贡献为 1 1 1 ,此外,另外 i − 1 i-1 i1 个数也要交换,产生贡献 ( i − 1 ) ∗ f i − 1 (i-1)*f_{i-1} (i1)fi1
  • (感觉思想上和错排公式的推导差不多)
  • 于是得到递推式 f i = i ∗ f i − 1 + ( i − 1 ) ∗ ( i − 1 ) ! f_i=i*f_{i-1}+(i-1)*(i-1)! fi=ifi1+(i1)(i1)!
  • 预处理一下就好了
线性求逆元

在这里插入图片描述

Code 1

#include<algorithm>
#include<cstdio>

#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fd(i,a,b) for(int i=a;i>=b;--i)
#define ll long long

using namespace std;

const ll N=1e7,P=998244353;
ll T,n,ny[N+5],sum[N+5];

ll ksm(ll a,ll b)
{
	ll s=1;
	for(;b;a=a*a%P,b>>=1)
		if(b&1) s=s*a%P;
	return s;
}

int main()
{
	freopen("inverse.in","r",stdin);
	freopen("inverse.out","w",stdout);
	ny[0]=ny[1]=sum[1]=1;
	fo(i,2,N)
	{
		ny[i]=P-(P/i)*ny[P%i]%P;//线性求逆元
		sum[i]=(sum[i-1]+ny[i])%P;
	}
	scanf("%lld",&T);
	while(T--)
	{
		scanf("%lld",&n);
		ll ans=((n-sum[n])%P+P)%P;
		printf("%lld\n",ans);
	}
}

Code 2

copy from ZZ

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 10000010
#define mo 998244353
#define m 10000000
#define ll long long
using namespace std;
int n,jc[N],f[N],ny[N];
ll ans=0;
ll mi(ll a,ll b)
{
	ll c=1;
	for(;b;b/=2,a=a*a%mo) if(b%2==1) c=c*a%mo;
	return c;
}
int main()
{
	freopen("inverse.in","r",stdin);
	freopen("inverse.out","w",stdout);
	int ac;scanf("%d",&ac);
	jc[0]=1;fo(i,1,m) jc[i]=1ll*jc[i-1]*i%mo;
	ny[m]=mi(jc[m],mo-2);
	fd(i,m-1,1) ny[i]=1ll*ny[i+1]*(i+1)%mo;
	fo(i,1,m) 
	f[i]=(f[i-1]+1ll*ny[i]*jc[i-1]%mo)%mo;//差分求逆元
	while(ac--)
	{
		scanf("%d",&n);
		printf("%d\n",(n-f[n]+mo)%mo);
	}
}

Code 3

copy from LZH

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define fo(i,j,k) for(int i=j;i<=k;++i)
#define fd(i,j,k) for(int i=j;i>=k;--i)
using namespace std;
typedef long long ll;
const int N=1e7+10,mo=998244353;
ll ny[N],f[N];
ll pow(ll x,int y){
	ll s=1;
	for(;y;y>>=1,x=x*x%mo) if(y&1) s=s*x%mo;
	return s;
}
int main()
{
	freopen("inverse.in","r",stdin);
	freopen("inverse.out","w",stdout);
	ll s=1;
	f[1]=0;
	fo(i,2,N-10){
		f[i]=(f[i-1]*i%mo+s*(i-1)%mo)%mo;
		s=s*i%mo;
	}
	ny[N-10]=pow(s,mo-2);
	fd(i,N-11,0) ny[i]=ny[i+1]*(i+1)%mo;
	fo(i,1,N-10) f[i]=f[i]*ny[i]%mo;
	int T;
	scanf("%d",&T);
	while(T--){
		int n;
		scanf("%d",&n);
		printf("%lld\n",f[n]);
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值