NOI2018 冒泡排序 解题记录

12 篇文章 0 订阅
11 篇文章 0 订阅

###【题目背景】
最近,小 S 对冒泡排序产生了浓厚的兴趣。为了问题简单,小 S 只研究对 1到 n的排列的冒泡排序。
下面是对冒泡排序的算法描述。
输入:一个长度为 n 的排列 p[1…n]
输出:p 排序后的结果。
for i = 1 to n do
for j = 1 to n - 1 do
if(p[i] > p[i + 1])
交换 p[i] 与 p[i + 1] 的值
冒泡排序的交换次数被定义为交换过程的执行次数。可以证明交换次数的一个下
界是 1 2 ∑ i = 1 n ∣ p i − i ∣ \frac{1}{2}\sum_{i=1}^n|{p_i-i}| 21i=1npii,其中 p i p_i pi是排列 p 中第 i 个位置的数字。如果你对证明感兴趣,可
以看提示。
###【题目描述】
小 S 开始专注于研究长度为 n 的排列中,满足交换次数 = 1 2 ∑ i = 1 n ∣ p i − i ∣ \frac{1}{2}\sum_{i=1}^n|{p_i-i}| 21i=1npii 的排列
(在后文中,为了方便,我们把所有这样的排列叫“好”的排列)。他进一步想,这样的
排列到底多不多?它们分布的密不密集?
小 S 想要对于一个给定的长度为 n 的排列 q,计算字典序严格大于 q 的“好”的
排列个数。但是他不会做,于是求助于你,希望你帮他解决这个问题,考虑到答案可能
会很大,因此只需输出答案对 998244353 取模的结果。
###【输入格式】
从文件 inverse.in 中读入数据。
输入第一行包含一个正整数 T,表示数据组数。
对于每组数据,第一行有一个正整数 n, 保证 n ≤ 6 × 10 5 。
接下来一行会输入 n 个正整数,对应于题目描述中的 q i ,保证输入的是一个 1 到
n 的排列。
###【输出格式】
输出到文件 inverse.out 中。
输出共 T 行,每行一个整数。
对于每组数据,输出一个整数,表示字典序严格大于 q 的“好”的排列个数对
998244353 取模的结果。
###【样例 1 输入】
1
3
1 3 2
###【样例 1 输出】
3
###【样例 1 解释】
字典序比 1 3 2 大的排列中,除了 3 2 1 以外都是“好”的排列,故答案为 3。
###数据范围
T ≤ 5 , N ≤ 600 , 000 T\le5,N\le600,000 T5,N600,000
##解题过程
一看到这道题就想着猜结论啊……于是我打了个表,发现如果输入恰好是1~n时,答案就是卡特兰数-1.
那其它的怎么办呢?我就把所有的符合要求的情况打印出来,发现——序列中不存在长度大于2的下降子序列!!
这是真的吗?反正我不断随机了好多数据,都满足这个规律,然后就开始想怎么做吧……
常规dp思路肯定是考虑从前往后把数字一个一个加进去,但是我感觉这样似乎不太方便处理字典序(如果有dalao用的这个思路请指教),但是这里面有一些思想还是值得借鉴的。我们考虑加入到了第i个数字,前面i-1个数字中的最大值为a,当前剩下的数字中最小值为b,我们会发现,要么当前插入b,要么当前插入的数字要大于a,否则一定不满足题意。我们称当前大于a的数字和b组成的集合为“可行数字集合”,记为 S i S_i Si
根据常规的排列字典序做法,我们可以考虑这样做:f[i][j]表示填到第 i i i个数字,并且希望在当前填入当前可行数字集合中第j大的数字的方法数。显然的,如果 ∣ S i ∣ &lt; n − i |S_i| &lt; n-i Si<ni,必然有 ∣ S i + 1 ∣ = j |S_{i+1}|=j Si+1=j,因为如果 j &lt; ∣ S i ∣ j&lt;|S_i| j<Si,那么比他小的有j-1个,再加上可以填入最小值,总共是j个;否则,大于a的j-1个数字都可用,且大于b小于a的数字必然还有剩余,这中间也可以再取出一个可行性数字。因此这种情况下有 f [ i ] [ j ] = ∑ k = 1 j f [ i − 1 ] [ k ] = f [ i ] [ j − 1 ] + f [ i − 1 ] [ j ] , 其 中 f [ 1 ] [ 1 ] = 1 f[i][j]=\sum_{k=1}^jf[i-1][k]=f[i][j-1]+f[i-1][j],其中f[1][1]=1 f[i][j]=k=1jf[i1][k]=f[i][j1]+f[i1][j]f[1][1]=1
再考虑 ∣ S i ∣ = n − i |S_i|=n-i Si=ni的情况。这种情况下,若 j &lt; ∣ S i ∣ j&lt;|S_i| j<Si,那么接下来仍然有j个数可以填,但如果 j = ∣ S i ∣ j=|S_i| j=Si,接下来就只剩j-1个数字可用了,需要特殊处理。综上,我们会发现f的总递推式:
f [ i ] [ j ] = { f [ i − 1 ] [ j ] + f [ i ] [ j − 1 ] j &lt; i f [ i ] [ j − 1 ] j = i f[i][j]=\left\{ \begin{matrix} f[i-1][j]+f[i][j-1] &amp; j&lt;i\\ f[i][j-1] &amp; j=i \end{matrix} \right. f[i][j]={f[i1][j]+f[i][j1]f[i][j1]j<ij=i
接下来考虑怎么统计结果。对于它输入的排列,我们先考虑第一位大于输入的情况。比如假设输入数列为p,那么大于第一位数字的答案数量应该就是: ∑ i = 1 n − p i f [ n ] [ i ] \sum_{i=1}^{n-p_i}f[n][i] i=1npif[n][i],再考虑第一位等于 p i p_i pi的情况。以此类推即可求出最终解。但是有一个特殊的地方,如果遍历到当前序列某个前缀已经不满足要求,必须直接break,以防多算。
举个栗子吧,比如输入的序列是2 4 3 1 5,我们先预处理出f数组:
f = 1 1 1 1 2 2 1 3 5 5 1 4 9 14 14 f=\begin{matrix} 1\\ 1 &amp; 1\\ 1 &amp; 2 &amp; 2\\ 1 &amp; 3 &amp; 5 &amp; 5\\ 1 &amp; 4 &amp; 9 &amp; 14 &amp; 14 \end{matrix} f=11111123425951414
对于第一位,我们可以选3,4,5,那 f [ 5 ] [ 1 ] + f [ 5 ] [ 2 ] + f [ 5 ] [ 3 ] = 14 f[5][1]+f[5][2]+f[5][3]=14 f[5][1]+f[5][2]+f[5][3]=14;接下来第一位确定为2,再看第二位,可以选择5,答案可以再加上 f [ 4 ] [ 1 ] f[4][1] f[4][1];再看第三位,可以填入5(4已经被使用过),答案加上 f [ 3 ] [ 1 ] f[3][1] f[3][1];但是此时发现前三位是2,4,3了,后面两个位置中必然有一个是1,与题意不符,于是break。答案为16.
这样做的话就可以得到一个 O ( n 2 ) O(n^2) O(n2)的dp做法,80分到手了,再加上卡特兰数的规律有84分的好成绩。于是我放弃了继续想这道题,去看了T3,放掉了A掉这道题的机会……早知道这道题多想一会儿了/手动无奈。
##正解
考虑到我们最终只会使用f数组某一行的一个前缀和,于是我们考虑如何快速求出这个前缀和。根据定义,有
∑ i = 1 m f [ n ] [ i ] = f [ n + 1 ] [ m ] \sum_{i=1}^mf[n][i]=f[n+1][m] i=1mf[n][i]=f[n+1][m]
因此我们只要能够快速求出f数组中的某个值即可。观察它的递推式,f[n][m]的值可以看做是从坐标(1,1)走到(n,m),每次可以向右或向上走一格,且不能越过(碰到不算)y=x这条直线的方案数。这是很经典的问题,根据折线定理,
f [ n ] [ m ] = C n + m − 2 n − 1 − C n + m − 2 n f[n][m]=C_{n+m-2}^{n-1}-C_{n+m-2}^n f[n][m]=Cn+m2n1Cn+m2n
于是我们预处理一下阶乘和逆元,就可以在O(1)的时间内查询出前缀和,整道题就可以在 O ( n ) O(n) O(n)的时间内解决。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn = 1200005, mod = 998244353;
int num[maxn], vis[maxn], T, n;
ll fact[maxn], rev[maxn];
ll modpow(ll a, int b){
    ll res = 1;
    for(; b; b >>= 1){
        if(b & 1) res = res * a % mod;
        a = a * a % mod;
    }
    return res;
}
ll get_num(int i, int j){
    ll C1 = fact[i + j - 2] * rev[i - 1] % mod * rev[j - 1] % mod;
    ll C2 = j > 1 ? fact[i + j - 2] * rev[j - 2] % mod * rev[i] % mod : 0;
    return C1 - C2 < 0 ? C1 - C2 + mod : C1 - C2;
}
const int maxr = 10000000;
char str[maxr]; int rpos;
char readc(){
    if(!rpos) fread(str, 1, maxr, stdin);
    char c = str[rpos++];
    if(rpos == maxr) rpos = 0;
    return c;
}
int read(){
    int x; char c;
    while((c = readc()) < '0' || c > '9');
    x = c - '0';
    while((c = readc()) >= '0' && c <= '9') x = x * 10 + c - '0';
    return x;
}
int main(){
    T = read();
    fact[0] = 1;
    for(int i = 1; i < maxn; i++)
        fact[i] = fact[i - 1] * i % mod;
    rev[maxn - 1] = modpow(fact[maxn - 1], mod - 2);
    for(int i = maxn - 2; i >= 0; i--)
        rev[i] = rev[i + 1] * (i + 1) % mod;
    while(T--){
        n = read();
        for(int i = 1; i <= n; i++){
            num[i] = read();
            vis[i] = 0;
        }
        int mx = 0, mn = 1, res = 0;
        for(int i = 1; i <= n; i++){
            while(vis[mn]) ++mn;
            int id = n - i + 1, cnt = n - max(mx, num[i]);
            if(cnt > 0) res += get_num(id + 1, cnt);
            if(res >= mod) res -= mod;
            vis[num[i]] = 1;
            if(num[i] < mx && num[i] > mn) break;
            if(num[i] > mx) mx = num[i];
        }
        printf("%d\n", res);
    }
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值