df.fillna(x)可以将缺失值填充为指定的值
import pandas as pd
# 原数据
df = pd.DataFrame({'A':['a1','a1','a2','a2'],
'B':['b1','b2',None,'b2'],
'C':[1,2,3,4],
'D':[5,6,None,8],
'E':[5,None,7,8]
})
# 将缺失值填充为0
res1 = df.fillna(0)
结果展示
df
res1
# 常用的方法还有以下几个:
# 填充为0
df.fillna(0)
# 填充为指定字符
df.fillna('missing')
df.fillna('暂无')
df.fillna('待补充')
# 指定字段填充
df.E.fillna('暂无')
# 指定字段填充
df.E.fillna(0, inplace = True)
# 只替换第一个
df.fillna(0, limit = 1)
# 将不同列的缺失值替换为不同的值
values = {'A':0,'B':1,'C':2,'D':3}
df.fillna(value = values)
需要注意的是,如果想让填充马上生效,需要重新为df赋值或者传入参数inplace = True
有时候我们不能填入固定值,而是按照一定的方法填充,df.fillna()提供了一个method参数,可以指定以下几个方法:
pad/ffill:向前填充,使用前一个有效值填充,df.fillna(method=’ffill’)可以简写为df.ffill()
bfill/backfill:向后填充,使用后一个有效值填充,df.fillna(method=’bfill’)可以简写为df.bfill()
import pandas as pd
# 原数据
df = pd.DataFrame({'A':['a1','a1','a2','a2'],
'B':['b1','b2',None,'b2'],
'C':[1,2,3,4],
'D':[5,6,None,8],
'E':[5,None,7,8]
})
# 取后一个有效值填充
res1 = df.fillna(method = 'bfill')
# 取前一个有效值填充
res2 = df.fillna(method = 'ffill')
结果展示
df
res1
res2
除了取前后值,还可以取经过计算得到的值,比如常用的平均值填充法:
# 填充列的平均值
df.fillna(df.mean())
# 对指定列填充平均值
df.fillna(df.mean()['B':'D'])
# 另一种填充列的平均值的方法
df.where(pd.notna(df),df.mean(),axis = 'columns')
缺失值的填充的另一思路是使用替换方法df.replace():
# 将指定列的空值替换成指定值
import pandas as pd
import numpy as np
# 原数据
df = pd.DataFrame({'A':['a1','a1','a2','a2'],
'B':['b1','b2',None,'b2'],
'C':[1,2,3,4],
'D':[5,6,None,8],
'E':[5,None,7,8]
})
df.replace({'B':{np.nan:'Hudas'}})
结果展示
扩展补充知识

import pandas as pd
stu_info = pd.read_excel(r'C:\Users\X2001565\Desktop\stu_info.xlsx')
stu_info.rename(columns=lambda x: str.lower(x), inplace=True)
stu_info
对字段'name'中的缺失值进行赋值
# refresh Name to put "Error" for empty one
def refresh_name(row):
if type(row['name']) != str:
return 'Error'
else:
return row['name']
stu_info['name'] = stu_info.apply(lambda row: refresh_name(row), axis = 1)
stu_info
提示Tips: 注意上述缺失值填充方法只适合字段存储的值是字符串类型
def refresh_grade(row):
if type(row['grade']) != str:
return 'No grade'
else:
return row['grade']
stu_info['grade'] = stu_info.apply(lambda row: refresh_grade(row), axis = 1)
stu_info
我们可以发现字段'grade'列填充缺失值是行不通的