[Pandas] 筛选和删除目标值所在的行

f1122cc1d5a44faa912c82d91484a460.png
美图欣赏2022/06/21

1.筛选出目标值所在行 

单列筛选

# df[列名].isin([目标值])对当前列中存在目标值的行会返回True,不存在的返回False
df[df[列名].isin([目标值])]

练习案例 

import pandas as pd
 
df_bom_data = pd.DataFrame([['A123',1200,5],
                            ['B456',550,2],
                            ['C437',500,10],
                            ['D112',621,7],
                            ['E211',755,11],
                            ['F985',833,8]
                            ],columns=['Material','Price','Quantity'])

df_material_shortage_data = pd.DataFrame([['A123','2022/6/21',100],
                                          ['B456','2022/6/22',120],
                                          ['C437','2022/6/23',250]
                                          ],columns=['Material','Schedule','LT'])
# 筛选出df_bom_data表中只包含df_material_shortage_data表中Material的行记录
df_bom_data = df_bom_data[df_bom_data['Material'].isin(df_material_shortage_data['Material'])]

df_bom_data

2d5d35b6f6e240cb9c8b26d539f38882.png

df_material_shortage_data 

1b078b53587b44df912612b8dbc2c668.png

df_bom_data(处理后)

6457ec13202f4998ba2a3a9689fd6f22.png

多列筛选

# 同时满足用&连接,或的话用 | 连接
df[df[列名].isin([目标值]) & df[列名].isin([目标值])]
df[df[列名].isin([目标值]) | df[列名].isin([目标值])]

练习案例 

import pandas as pd
 
df = pd.DataFrame([['L123','A',0],
                   ['L456','A',1],
                   ['L437','C',0],
                   ['L112','B',1],
                   ['L211','A',0],
                   ['L985','B',1]
                  ],columns=['Material','Level','Passing'])
# 筛选出指定列都有目标值的行
res1 = df[df['Level'].isin(['A','C']) & df['Passing'].isin([0])]
# 筛选出至少有一列有目标值的行
res2 = df[df['Level'].isin(['A','C']) | df['Passing'].isin([0])]

df

1ae55669f2734c548e50950839cecc59.png

res1

726055afe85f4afba103dbd2b2d0c755.png

res2 

9f5a0c789ab946918b27b2e9ef6cd9cf.png

2.删除目标值所在的行

练习案例

import pandas as pd
import numpy as np
 
df_bom_data = pd.DataFrame([['A123',1200,5],
                            ['B456',np.nan,np.nan],
                            ['C437',500,10]
                            ],columns=['Material','Price','Quantity'])

df_material_shortage_data = pd.DataFrame([['A123','2022/6/21',100],
                                          ['B456','2022/6/22',120],
                                          ['C437','2022/6/23',250]
                                          ],columns=['Material','Schedule','LT'])

# 筛选出df_bom_data中'Price'和'Quantity'两列字段的值都为空(nans)的行
df_isnull_bom_data = df_bom_data[pd.isnull(df_bom_data[df_bom_data.columns.tolist()[1:]]).all(axis=1)]

# df_material_shortage_data表删除all_isnull_df_bom_data表中的Material
df_material_shortage_data = df_material_shortage_data[~df_material_shortage_data['Material'].isin(df_isnull_bom_data['Material'])]

df_bom_data

db5e2c7c5898483fa8734481636d805f.png

df_material_shortage_data

63147195d7f143d989fb54bc8cf94ec2.png

df_isnull_bom_data 

4083bf1f4f944af99311a745ec876b22.png

df_material_shortage_data(处理后)

5294cb7f6a184b138831397b6573cf48.png


扩展补充案例:删除列为指定值所在的行

import pandas as pd
 
df = pd.DataFrame([[0,1,2,3],
                  [4,5,6,7],
                  [8,9,10,11]
                  ],columns=['A','B','C','D'])

# 通过重新取值,数据筛选后重新赋值,达到删除列为指定值的行数据
# 删除A列中值为0的那一行记录
df = df[df['A'] != 0]

df

1f1d694dacdf476b98a575bac9ab6ac2.png

df(处理后) 

de92dc9dffaf47a38299c9eccc52b4fd.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值