正态分布(Normal Distribution)

正态分布,又称为高斯分布,是一种连续概率分布,其特征由期望和方差决定。当期望为0,标准差为1时,形成标准正态分布。概率密度函数在期望值处达最大并关于其对称,而标准差影响分布的形状。样本方差是总体方差的无偏估计,方差衡量数据的离散程度。

正态分布(Normal Distribution),又名高斯分布(Gaussian Distribution),是一个常见的连续概率分布。

若随机变量X服从一个数学期望为\mu,方差为\sigma^2的正态分布,则可以记成:

X\sim N(\mu,\sigma^2)

其概率密度函数为正态分布,期望值决定概率密度函数位置,标准差决定分布的幅度,当期望为0,标准差为1时的正态分布为标准正态分布。

f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}

均值和总体方差计算方法:

\mu =\frac{\sum_{i=1}^{n}{x_i}}{n}

\sigma^2=\frac{\sum_{i=1}^{n}{(x_i-\mu)^2}}{n}

样本方差:

\sigma^2=\frac{\sum_{i=1}^{n}{(x_i-\mu)^2}}{n-1}

样本方差的期望是总体方差的一个无偏估计。

性质:

1. 概率密度在期望值\mu处达到最大,且关于其对称;

2. 正态分布曲线完全决定于期望值和标准差;

3.概率密度积分为1;

4.标准差越大,概率密度函数图像越扁平,标准差越小,概率密度函数图像越陡峭集中。

均方误差:

方差:

s^2 = \frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n}

如果本篇文章解决了你的疑惑,请不要吝啬你的点赞哦,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值