正态分布(Normal Distribution),又名高斯分布(Gaussian Distribution),是一个常见的连续概率分布。
若随机变量X服从一个数学期望为,方差为
的正态分布,则可以记成:
其概率密度函数为正态分布,期望值决定概率密度函数位置,标准差决定分布的幅度,当期望为0,标准差为1时的正态分布为标准正态分布。
均值和总体方差计算方法:
样本方差:
样本方差的期望是总体方差的一个无偏估计。
性质:
1. 概率密度在期望值处达到最大,且关于其对称;
2. 正态分布曲线完全决定于期望值和标准差;
3.概率密度积分为1;
4.标准差越大,概率密度函数图像越扁平,标准差越小,概率密度函数图像越陡峭集中。

均方误差:

方差:
如果本篇文章解决了你的疑惑,请不要吝啬你的点赞哦,谢谢!
正态分布,又称为高斯分布,是一种连续概率分布,其特征由期望和方差决定。当期望为0,标准差为1时,形成标准正态分布。概率密度函数在期望值处达最大并关于其对称,而标准差影响分布的形状。样本方差是总体方差的无偏估计,方差衡量数据的离散程度。
1149

被折叠的 条评论
为什么被折叠?



