关于csu第三次模拟测试的一丢丢讨论(素数查找优化、暴力枚举,大数的处理)
一 素数查找办法优化😎😎
(撰稿人brainstorm YYF)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
题目描述
哥德巴赫猜想用一句话描述就是: 任何大于2的偶数,都可以表示成两个质数之和。
hx073269和他的小伙伴PIPI打了个赌,只要hx073269能证明100W以内的哥猜,PIPI就会请hx073269吃饭.
你能帮帮hx073269赢顿饭吃吗?
输入
输入包含多组测试用例(输入数据不超过2000组),每一行包含一个偶数 n (4<=n<=1000000)
输出
对于每组测试用例,找到所有的质数对a和b (a+b=n ,a<=b)。每组用例之间隔一个空行~
a从小到大输出~
样例输入 Copy
4
20
80
样例输出 Copy
2 2
3 17
7 13
7 73
13 67
19 61
37 43
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
首先要注意的的就是多组样例,常用的惯用法有
while(scanf("%d",&n)!=EOF);
//或者
while(~scanf("%d"),&n);
接下来就是找这个数能拆成的素数了,一般会想到的办法是遍历1~n/2,判断那些是素数,接着算出n-此素数,判断新算出的数是否是素数,而每次判断素数又都要进行遍历
代码如下
#include<stdio.h>
#include<stdlib.h>
int main()
{
int n,count_1,count_2;
while(scanf("%d",&n)!=EOF)
{
for(int a=2;a<=n/2;a++)
{
count_1 = 0;
for (int i = 2; i < a ; i++;)
if (a % i == 0)
{
count_1++;
break;
}
if (count_1 == 0)
{
int c = n - a;
count_2 = 0;
for (int i = 2; i <= c - 1; i++)
if (c % i == 0)
{
count_2++;
break;
}
if (count_2 == 0)
{
printf("%d %d\n", a, c);
}
}
}
printf("\n");
}
//getchar();getchar();
return 0;
}
这个最简单简单粗暴的代码是时间超限的(for循环里嵌套for循环,时间复杂度为n^2),那么我们就要考虑优化算法.
首先假定所有数均为素数。我们申明一个数组ar[1000001],则将每个元素都初始化为1,ar[2]=1代表2为素数,ar[60]=1代表60为素数。这个时候要进行下一步操作,即找出真素数,我们注意到素数的倍数均不为素数,2的倍数4,6,8,10等等均不为素数,这个时候就把ar[4],ar[6],ar[8],ar[10]等等赋值为0,代表他们不是素数,同理3是素数,6,9,12等等均不为素数,通过这种方法就首先找到了1000001以内的所有素数。
int ar[n+1];
for(int i=0;i<=n;i++)
ar[i]=1;
for(int a=2;a<=n;a++)
{
if(ar[a])
for(int j=a*2;j<=n;j+=a)
ar[j]=0;
}
而实际上数组只需要开到n+1就够了(数组下标是从0开始的),但要注意到c89并不支持变长数组,c99才支持变长数组。
当找到了所有素数之后,想必下面也不需要我赘述了,完整代码附在下边。
#include<stdio.h>
#include<stdlib.h>
int main(