题目要求最大化最小值,因此肯定要二分答案了;
那么二分了之后怎么检查呢?对于从左往右的第i个城堡,如果它的防御值不满足二分的x的话,
那么考虑到他左边的城堡都满足了这个x值,因此弓箭手肯定加在i+rad上最佳。
然后怎么扫,一开始以为要用线段树或者树状数组维护前缀和,然后都tle GG了
后来发现其实拿两个指针,一个指向左边,一个指向右边,维护这一段的和即可,每次检查复杂度大概是线性的,可以接受;细节见代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const ll INF=1e15;
const int N=500005;
ll a[N],num[N];
ll n,rad,k;//left,right,mid;
bool check(ll x)
{
ll sum=0,temp=0;ll l=1,r=rad+1;
memcpy(a,num,sizeof(num));//不要与strcpy弄混
for(int i=1;i<=r;i++)sum+=a[i];//维护区间防御值,也就是当前点的防御值
for(int i=1;i<=n;i++){
if(sum<x){
a[r]+=x-sum;//增加弓箭手
temp+=(x-sum);
if(temp>k)return false;
sum=x;
}
if(r<n){
r++;sum+=a[r];//指针右移
}
if(i>rad){//左指针右移
sum-=a[l];l++;
}
}
return true;
}
ll find(void)
{
ll left=INF,right=0,mid,ans;
for(int i=1;i<=n;i++){
left=min(left,num[i]);right+=num[i];
}
right+=k;//注意right一定要取到可能的最大值....很多bt数据
while(left<=right){
mid=(left+right)>>1;
if(check(mid)){
ans=mid;left=mid+1;//注意二分的方式...
}
else
right=mid-1;
}
return ans;
}
int main()
{
cin>>n>>rad>>k;
for(int i=1;i<=n;i++)scanf("%lld",&num[i]);
cout<<find()<<endl;
return 0;
}