第二场CF了(好久才碰到一场下午的CF,但是是星期四下午,刚好有一节信息课,于是在信息课做了一小时题,回班上了一节数学课,然后信息培训的时候继续打)。
于是中间有一小时没有提交记录(在上数学课)。
结果就比较惨烈。。。
幸(jing)好(ran)还是涨了Rating的。
题解
A
题意:给你一个只含有'R'和'U'的字符串(长度小于等于100),你可以把这个字符串中的"RU"或者"UR"替换成'D',问替换完成后的字符串的最小长度。
一看就是暴力。
代码:
#include <bits/stdc++.h>
using namespace std;
int n,ans;
string s;
int main()
{
cin >> n >> s;
for(int i=1;i<s.length();++i)
{
if(s[i]=='U' && s[i-1]=='R')
{
s[i]='D';
++ans;
continue;
}
if(s[i]=='R' && s[i-1]=='U')
{
s[i]='D';
++ans;
continue;
}
}
cout << n-ans << endl;
}
B
题意:一开始你有一个空串,你有两种操作:
1、在这个串后面加入一个字符。
2、把这个串复制一遍,接到原串后面。(只能用一次)
给你目标串(长度小于等于100),求最少操作次数。
(一看到题lc还以为全是字符串题)
既然操作2只能用一次,那么就枚举什么时候用的操作2,更新答案即可。
代码:
#include <bits/stdc++.h>
using namespace std;
int n,ans;
string s;
int work(int x)
{
if(x*2+1>=s.length())return 2147483647;
for(int i=0;i<=x;++i)
{
if(s[i]!=s[x+i+1])
return 2147483647;
}
return s.length()-x;
}
int main()
{
cin >> n >> s;
ans=n;
for(int i=0;i<s.length();++i)
{
ans=min(ans,work(i));
}
cout << ans << endl;
}
C
题意:有一个如下构造的二维数组:
第一行:1 2 3 4 5...列数
第二行:列数+1 列数+2 列数+3...2*列数
.
.
.
现在在这个二维数组上移动,(只能向上下左右,并且不能越界),经过的每一个格子的数字按顺序构成一个数列。
现在给你一个移动数列(长度为n,n<=200000
),判断是不是合法的,如果是,输出这个二维数组的一种可能的长宽。
思路清晰:如果这个数列相邻的两个数的差大于1,那么他们一定是在两行上,就能得到列数,从而判断所有的移动是否都合法。
我:这个二维数组的长好像可以是任意大(只要是足够大)的。。。
lc:(嘲讽)不然呢?
(过一会)
我:如果我们求出了列数,那么从列数*k走到列数*k+1是不合法的。
lc:(恍然大悟)对哦。
(再过一会)
我的代码:WA test #5。
lc的代码:WA test #4。
我:求出列数之后,你还要判断前面的数有没有
从列数*k走到列数*k+1这种不合法情况。
lc:那就再扫一遍。
(没时间改了,去上数学课,一个小时后)
改完的我的代码:WA test #5。
改完后的lc的代码:RE test #4。
lc测了一下n=1的数据,启发了我,于是我试了一下我的代码n=1,炸了!遂加特判,于是WA test #7。
lc:为什么会RE?
我:只可能是0作除数。
lc:那就证明这个数列有相邻两个数相等的情况。
lc交了改完的代码:WA test #4。
于是lc看了看我的代码(我的代码过了test #4),把输出"1000000000 1000000000"改成了"1000000000 1"。
WA test #4。
我:你是不是忘记输出了"YES"。
lc:(突然觉悟)。。。。。。
此时的我一直不知道我的代码test #7怎么错了,此时lc把他的代码交了上去(他就加上了"YES")。
我:你要是AC了我打死你。
lc的电脑屏幕:"Accepted"。
(一阵机房里的追逐过后)
我又花了12分钟才把C题改好。这是lc已经在看D题面了(没错他就是看了怎么久,最后还是得我给他解释)
先补上C题代码:
#include <bits/stdc++.h>
using namespace std;
int n,a[200001],dis;
int main(){
scanf("%d",&n);
if(n==1){
puts("YES\n1000000000 1");
return 0;
}
for(int i=1;i<=n;++i){
scanf("%d",a+i);
if(i==1)continue;
if(a[i]==a[i-1]){
puts("NO");
return 0;
}
if(abs(a[i]-a[i-1])!=1){
if(!dis)dis=abs(a[i]-a[i-1]);
else if(abs(a[i]-a[i-1])!=dis){
puts("NO");
return 0;
}
}
}
if(!dis){
puts("YES\n1000000000 1");
return 0;
}
for(int i=2;i<=n;++i)
if(abs(a[i]-a[i-1])!=dis&&(abs(a[i]-a[i-1])!=1||max(a[i],a[i-1])%dis==1)){
puts("NO");
return 0;
}
puts("YES");
printf("1000000000 %d",dis);
}
D
题意:n个点m条边的无向图(n<=1000,m<=1000),没有自环重边,现在告诉你两个点s t,让你求有多少种加边方法(只加一条边),使得s t两点最短路长度不变。
两点最短路的定义是连接这两点的路径的最少边数(其实就是每条边边权为1)。
lc:暴力枚举加的边,然后看看会不会影响啊!
我:超时。。。
lc:不会,n才1000。
我:你暴力就n^2了,验证n,总共n^3。。。
lc:(突然意识到验证是O(n)的)是喔。
(一会后)
我:加上的边会影响s t的最短路是不是当且仅当这条边的两个端点在s t最短路上并且这两个端点在这条最短路上不是相邻的。
lc:(迅速地)(蔑视的)不是。(举出反例)
(过了一会)
我:(灵感浮现)原来这题这么简单我知道怎么做了。
lc:(疑惑)怎么做?
我:从s t各自SPFA一遍,然后暴力枚举加的边,它会影响s t最短路当且仅当这条加的边的端点与s的距离+加的边的另一个端点与t的距离+1小于原本的最短路。
lc:好像是很简单。
(思考5秒)
lc:我忘了SPFA。
。。。
于是我码完测样例,答案不对,想了想。
我:(天真地)已经有的边不能加了耶!
lc:不然呢。。。。
于是一遍AC。
(lc由于
忘了SPFA 在做字符串哈希的题没有打这一题)
代码:
#include <bits/stdc++.h>
using namespace std;
#define MAXN 1001
vector<int> edge[MAXN];
int ds[MAXN],dt[MAXN],inque[MAXN],n,m,s,t;
bool h[MAXN][MAXN];
void spfa(int x,int *d)
{
queue<int> q;
q.push(x);
for(int i=1;i<=n;++i)
{
d[i]=1000000000;
}
d[x]=0;
inque[x]=true;
memset(inque,false,sizeof(inque));
do
{
int u=q.front();
q.pop();
inque[u]=false;
for(unsigned i=0;i<edge[u].size();++i)
{
int v=edge[u][i],w=1;
if(d[v]>d[u]+w)
{
d[v]=d[u]+w;
if(!inque[v])
{
inque[v]=true;
q.push(v);
}
}
}
}
while(!q.empty());
}
int main()
{
scanf("%d%d%d%d",&n,&m,&s,&t);
for(int i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
edge[v].push_back(u);
h[u][v]=h[v][u]=1;
}
spfa(s,ds);
spfa(t,dt);
int ans=0;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(i!=j && !h[i][j] && !h[j][i])
{
if(!((ds[i]+dt[j]+1<ds[t])||(ds[j]+dt[i]+1<ds[t])))++ans;
}
}
}
printf("%d\n",ans/2);
}
完