Problem Description
小希和Gardon在玩一个游戏:对一个N*M的棋盘,在格子里放尽量多的一些国际象棋里面的“车”,并且使得他们不能互相攻击,这当然很简单,但是Gardon限制了只有某些格子才可以放,小希还是很轻松的解决了这个问题(见下图)注意不能放车的地方不影响车的互相攻击。
所以现在Gardon想让小希来解决一个更难的问题,在保证尽量多的“车”的前提下,棋盘里有些格子是可以避开的,也就是说,不在这些格子上放车,也可以保证尽量多的“车”被放下。但是某些格子若不放子,就无法保证放尽量多的“车”,这样的格子被称做重要点。Gardon想让小希算出有多少个这样的重要点,你能解决这个问题么?
Input
输入包含多组数据,
第一行有三个数N、M、K(1<N,M<=100 1<K<=N*M),表示了棋盘的高、宽,以及可以放“车”的格子数目。接下来的K行描述了所有格子的信息:每行两个数X和Y,表示了这个格子在棋盘中的位置。
Output
对输入的每组数据,按照如下格式输出:
Board T have C important blanks for L chessmen.
Sample Input
3 3 4
1 2
1 3
2 1
2 2
3 3 4
1 2
1 3
2 1
3 2
Sample Output
Board 1 have 0 important blanks for 2 chessmen.
Board 2 have 3 important blanks for 3 chessmen.
思路:
可以放最多“车”的数量等于最大匹配数total,而关键点数为,去掉一条边后重新查看最大匹配数temp,若temp < total,说明这条边为关键边即,这个点的位置为关键点
#include<bits/stdc++.h>
using namespace std;
int n, m, k, x, y, ans, temp, point;
int g[105][105], vis[105], linker[105];
bool dfs(int u) {
for(int i = 1; i <= m; i++) {
if(g[u][i] && !vis[i]) {
vis[i] = 1;
if(!linker[i] || dfs(linker[i])) {
linker[i] = u;
return true;
}
}
}
return false;
}
int hungary() {
ans = 0;
memset(linker, 0, sizeof(linker));
for(int i = 1; i <= n; i++) {
memset(vis, 0, sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main() {
int count = 1;
while(~scanf("%d %d %d", &n, &m, &k)) {
memset(g, 0, sizeof(g));
for(int i = 0; i < k; i++) {
scanf("%d %d", &x, &y);
g[x][y] = 1;
}
int total = hungary();
temp = 0, point = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(!g[i][j]) continue;
g[i][j] = 0;
temp = hungary();
g[i][j] = 1;
if(temp < total) point++;
}
}
printf("Board %d have %d important blanks for %d chessmen.\n", count, point, total);
count++;
}
return 0;
}