棋盘游戏 --- 二分图匹配 匈牙利算法

Problem Description
小希和Gardon在玩一个游戏:对一个N*M的棋盘,在格子里放尽量多的一些国际象棋里面的“车”,并且使得他们不能互相攻击,这当然很简单,但是Gardon限制了只有某些格子才可以放,小希还是很轻松的解决了这个问题(见下图)注意不能放车的地方不影响车的互相攻击。
在这里插入图片描述

所以现在Gardon想让小希来解决一个更难的问题,在保证尽量多的“车”的前提下,棋盘里有些格子是可以避开的,也就是说,不在这些格子上放车,也可以保证尽量多的“车”被放下。但是某些格子若不放子,就无法保证放尽量多的“车”,这样的格子被称做重要点。Gardon想让小希算出有多少个这样的重要点,你能解决这个问题么?

Input
输入包含多组数据,
第一行有三个数N、M、K(1<N,M<=100 1<K<=N*M),表示了棋盘的高、宽,以及可以放“车”的格子数目。接下来的K行描述了所有格子的信息:每行两个数X和Y,表示了这个格子在棋盘中的位置。

Output
对输入的每组数据,按照如下格式输出:
Board T have C important blanks for L chessmen.

Sample Input
3 3 4
1 2
1 3
2 1
2 2
3 3 4
1 2
1 3
2 1
3 2

Sample Output
Board 1 have 0 important blanks for 2 chessmen.
Board 2 have 3 important blanks for 3 chessmen.

思路:
可以放最多“车”的数量等于最大匹配数total,而关键点数为,去掉一条边后重新查看最大匹配数temp,若temp < total,说明这条边为关键边即,这个点的位置为关键点

#include<bits/stdc++.h>
using namespace std;

int n, m, k, x, y, ans, temp, point;
int g[105][105], vis[105], linker[105];

bool dfs(int u) {
	for(int i = 1; i <= m; i++) {
		if(g[u][i] && !vis[i]) {
			vis[i] = 1;
			if(!linker[i] || dfs(linker[i])) {
				linker[i] = u;
				return true;
			}
		}
	}
	return false;
}

int hungary() {
	ans = 0;
	memset(linker, 0, sizeof(linker)); 
	for(int i = 1; i <= n; i++) {
		memset(vis, 0, sizeof(vis));
		if(dfs(i))	ans++;
	}
	return ans;
}


int main() {
	int count = 1;
	while(~scanf("%d %d %d", &n, &m, &k)) {
		memset(g, 0, sizeof(g));
		for(int i = 0; i < k; i++) {
			scanf("%d %d", &x, &y);
			g[x][y] = 1; 
		}
		int total = hungary();
		temp = 0, point = 0;
		for(int i = 1; i <= n; i++) {
			for(int j = 1; j <= m; j++) {
				if(!g[i][j])	continue;
				g[i][j] = 0;
				temp = hungary();
				g[i][j] = 1;
				if(temp < total)	point++;
			}
		}
		printf("Board %d have %d important blanks for %d chessmen.\n", count, point, total);
		count++;
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值