点到平面的距离计算

      在工程计算过程中,往往要求我们计算点到平面的距离,特别是在计算机图形学中的运用最多。如图1所示,已知一个平面Plan的方向n和该平面上的顶点B,求空间中某一个顶点P到该平面的距离。假设点P在平面Plan上的投影点为P1,那么我们知道proj(P1P)便是点P到该平面的距离。如果我们连接点P和点B,其实会发现,proj(P1P)就是向量BP在该平面法矢上的投影。

图1

所以会有:

  (1)

如果平面Plan是以方程:

给出,那么该平面的法矢为:

   (2)

那么点B的坐标可以设为:

假设点P的坐标为:

向量BP为:

 (3)

将式(2)(3)带入式(1)得:

化简得到:proj(p_1p)=\frac{Ax_p+By_p+Cz_p+D}{\sqrt{A^2+B^2+C^2}}

如果proj(P1P)的值为负,说明点P在平面Plan的异侧,否则为同侧。

注:这里proj(P1P)表示有向距离,如果要求绝对值距离,那么为| proj(P1P)|。

python代码如下:

import numpy as np

def calcDistToPlane(param_plane,xyz_p):
    '''
    :param param_plane:list [A,B,C,D]
    :param xyz_p: list [xp,yp,zp]
    :return:distance frome p to plane
    '''
    ABCD=np.asarray(param_plane)
    xyz=np.asarray(xyz_p)
    sqrt_AABBCC=np.linalg.norm(ABCD[:-1])
    return (np.dot(ABCD[:-1],xyz)+ABCD[-1])/sqrt_AABBCC

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值