在工程计算过程中,往往要求我们计算点到平面的距离,特别是在计算机图形学中的运用最多。如图1所示,已知一个平面Plan的方向n和该平面上的顶点B,求空间中某一个顶点P到该平面的距离。假设点P在平面Plan上的投影点为P1,那么我们知道proj(P1P)便是点P到该平面的距离。如果我们连接点P和点B,其实会发现,proj(P1P)就是向量BP在该平面法矢上的投影。
图1
所以会有:
(1)
如果平面Plan是以方程:
给出,那么该平面的法矢为:
(2)
那么点B的坐标可以设为:
假设点P的坐标为:
向量BP为:
(3)
将式(2)(3)带入式(1)得:
化简得到:
如果proj(P1P)的值为负,说明点P在平面Plan的异侧,否则为同侧。
注:这里proj(P1P)表示有向距离,如果要求绝对值距离,那么为| proj(P1P)|。
python代码如下:
import numpy as np
def calcDistToPlane(param_plane,xyz_p):
'''
:param param_plane:list [A,B,C,D]
:param xyz_p: list [xp,yp,zp]
:return:distance frome p to plane
'''
ABCD=np.asarray(param_plane)
xyz=np.asarray(xyz_p)
sqrt_AABBCC=np.linalg.norm(ABCD[:-1])
return (np.dot(ABCD[:-1],xyz)+ABCD[-1])/sqrt_AABBCC