在进制未知的情况下,有如下等式成立:
15*4 == 112;
该进制为 A :6 B : 7 C : 8 D: 9
//首先,假设它的进制为x
//对该式按权展开可以得到(x+5)*4 == x^2+x+2
//化简后可以得到4x+20 == x^2+x+2
//由于都是进制为x,则
两边对x取余
//
在上式中,由于末位能够取得5,可知该进制一定大于5,可得到等式
// 20%x == 2; 依此,排除选项B、C
//接着再考虑一次项,先通过除以x,将末位的值扔掉
//
再对x取余,这样就比较的是一次项的值是否符合要求
//得到等式 (4+20/x) %x == (x+2/x)%x
//
(4+20/x) %x == 0
//带入A和D选项
//排除D选项,该进制为6.
同样对于位数较多的等式依然适用。
例如:假设在n进制下,567*456 == 150216,n的值是()。
A. 9 B. 10 C. 12 D.18
//同理,先按权展开判断末位的情况,设其进制为n.
//得到等式20n^4+49n^3+88n^2+71n+42 == n^5+5n^4+2n^2+n+6
//同样,由于在等式右边能够取得6,那么该进制一定是大于6的
//先对n取余
// 42%n == 6
//排除选项B
//接着除以n,扔掉末位的数,再%n,对一次项的数进行比较,得到
//(71+42/n)%n == (1+6/n)%n
//
(71+42/n)%n == 1
//带入选项可知D.18符合要求