大菲波数 HDU--1715(大数相加)

题目链接

Fibonacci数列,定义如下:

f(1)=f(2)=1
f(n)=f(n-1)+f(n-2) n>=3。
计算第n项Fibonacci数值。

Input

输入第一行为一个整数N,接下来N行为整数Pi(1<=Pi<=1000)。

Output

输出为N行,每行为对应的f(Pi)。

Sample Input
5
1
2
3
4
5
Sample Output
1
1
2
3
5

使用递归只能算出这个大菲波数的前几十个数字,之后的数字就会超时,因为题目要求是前1000个数字,而大菲波数第1000个数字大概有300位左右,已经远远超出了整形变量的范围,所以我们要使用数组来存储这样的超大数字,而我们要存储1000个这样的数组,因此要使用二维数组存储,先将这1000个数组计算出来存储好,再将他们按照要求输出即可。
这些数字的计算过程其实就是就是模拟我们进行大数相加的过程。
#include<iostream>
using namespace std;
int a[1005][500];
int main()
{
	int plus=0;
	a[1][1]=1;
	a[2][1]=1;
	int p;
	for(int i=3;i<=1000;i++)
	{
		for(int j=1;j<500;j++)
		{
			p=a[i-1][j]+a[i-2][j]+plus;
			a[i][j]=p%10;
			plus=p/10;
		}
	}
	int n;
	cin>>n;
	int q;
	while(n--)
	{
		cin>>q;
		int c;
		for(c=499;c>=1;c--)
		{
			if(a[q][c]!=0)
			break;
		}
		for(;c>=1;c--)
		{
			cout<<a[q][c];
		}
		cout<<endl;
	}
	return 0;
}
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页