关于大斐波数

  以前总是对大斐波数模模糊糊的,看到如此庞大的数据就会望而生畏,但随着我不断地看大神的代码,学习,到现在为止,我已经掌握了很多种大菲薄的代码了,其实本质上还是对于高精度的应用,不过这里是二维数组,我看到还有用字符串的,其实都是可以的,不过我建议使用最淳朴的整型二维数组,这样出错的机会就会减少很多。

  一下是第一种代码(我会给出详细的解释)

  一般要求求大斐波数都不会超过第1000个,在资料中找到第1000位大斐波数才300多位,只需要开一个第一维为1000,第二维为500的数组就可以了;

#include<iostream>
#include<cstdio>
using namespace std;
int a[1003][1003];///最多有1000个数,一个数的长度最多1000位

关键就是理解,二维数组的第二维就是代表的此数的各个位数,当然前提是理解高精度加法的基本思想,既模拟手加算法;
int main()
{
    int n;
    int jinwei = 0,s;
    a[1][0] = a[2][0] = 1;
    for(int i = 3; i <= 1000; i++)
        for(int j = 0; j < 1000; j++)
        {
            s = a[i-1][j] + a[i-2][j] + jinwei;///开始进行高精度模拟,这是算法的核心;
            a[i][j] = s % 10;///表示第j位
            jinwei = s / 10;
        }
    while(~scanf("%d",&n))
    {
        int i;
        for(i = 1000; i >= 0; i--)
        {
            if(a[n][i] == 0)
            {
                i--;
            }
            else break;
        }///需要去除前导零;
        for(;i >= 0;i--)
            printf("%d",a[n][i]);
        puts("");
    }
}

  这是10进制的大数加法,我们学长还改成了10000000进制的加法,使用更加安全,理论上支持n进制,因为高精度的思想就在这里,不管是多少进制,只要是满足满N进一,

就可以用高精度:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 250;
typedef long long LL;
const LL mod = 1000000000;
const int m = 23;
LL b[1005][maxn];
void init()
{
    b[1][0] = 1;
    b[2][0] = 1;
    for(int i = 3; i <= 1000; i++)
    {
        for(int j = 0; j <= m; j++)
        {
            b[i][j] = b[i -1][j] + b[i - 2][j];
        }
        for(int j = 0; j <= m; j++)
        {
            b[i][j + 1] += b[i][j] / mod;
            b[i][j] %= mod;
        }
    }
}
void print(int n)
{
    bool flag = false;
    for(int i = m; i >= 0; i--)
    {
        if(flag)
        {
            printf("%09lld", b[n][i]);/// £¿£¿£¿%09£¿£¿£¿
        }
        else
        {
            if(b[n][i] != 0)
            {
                printf("%lld", b[n][i]);
                flag = true;
            }
        }
    }
    puts("");
}
int main()
{
    init();
    int t, n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        print(n);
    }
}

怎么样,很帅吧。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值