以前总是对大斐波数模模糊糊的,看到如此庞大的数据就会望而生畏,但随着我不断地看大神的代码,学习,到现在为止,我已经掌握了很多种大菲薄的代码了,其实本质上还是对于高精度的应用,不过这里是二维数组,我看到还有用字符串的,其实都是可以的,不过我建议使用最淳朴的整型二维数组,这样出错的机会就会减少很多。
一下是第一种代码(我会给出详细的解释)
一般要求求大斐波数都不会超过第1000个,在资料中找到第1000位大斐波数才300多位,只需要开一个第一维为1000,第二维为500的数组就可以了;
#include<iostream>
#include<cstdio>
using namespace std;
int a[1003][1003];///最多有1000个数,一个数的长度最多1000位
关键就是理解,二维数组的第二维就是代表的此数的各个位数,当然前提是理解高精度加法的基本思想,既模拟手加算法;
int main()
{
int n;
int jinwei = 0,s;
a[1][0] = a[2][0] = 1;
for(int i = 3; i <= 1000; i++)
for(int j = 0; j < 1000; j++)
{
s = a[i-1][j] + a[i-2][j] + jinwei;///开始进行高精度模拟,这是算法的核心;
a[i][j] = s % 10;///表示第j位
jinwei = s / 10;
}
while(~scanf("%d",&n))
{
int i;
for(i = 1000; i >= 0; i--)
{
if(a[n][i] == 0)
{
i--;
}
else break;
}///需要去除前导零;
for(;i >= 0;i--)
printf("%d",a[n][i]);
puts("");
}
}
这是10进制的大数加法,我们学长还改成了10000000进制的加法,使用更加安全,理论上支持n进制,因为高精度的思想就在这里,不管是多少进制,只要是满足满N进一,
就可以用高精度:
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 250;
typedef long long LL;
const LL mod = 1000000000;
const int m = 23;
LL b[1005][maxn];
void init()
{
b[1][0] = 1;
b[2][0] = 1;
for(int i = 3; i <= 1000; i++)
{
for(int j = 0; j <= m; j++)
{
b[i][j] = b[i -1][j] + b[i - 2][j];
}
for(int j = 0; j <= m; j++)
{
b[i][j + 1] += b[i][j] / mod;
b[i][j] %= mod;
}
}
}
void print(int n)
{
bool flag = false;
for(int i = m; i >= 0; i--)
{
if(flag)
{
printf("%09lld", b[n][i]);/// £¿£¿£¿%09£¿£¿£¿
}
else
{
if(b[n][i] != 0)
{
printf("%lld", b[n][i]);
flag = true;
}
}
}
puts("");
}
int main()
{
init();
int t, n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
print(n);
}
}
怎么样,很帅吧。。