文件写入过程
详细步骤解析:
1、 client发起文件上传请求,通过RPC与NameNode建立通讯,NameNode检查目标文件是否已存在,父目录是否存在,返回是否可以上传;
2、 client请求第一个block该传输到哪些DataNode服务器上;
3、 NameNode根据配置文件中指定的备份数量及机架感知原理进行文件分配,返回可用的DataNode的地址如:A,B,C;
4、 client请求3台DataNode中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将整个pipeline建立完成,后逐级返回client;
5、 client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位(默认64K),A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答。
6、 数据被分割成一个个packet数据包在pipeline上依次传输,在pipeline反方向上,逐个发送ack(命令正确应答),最终由pipeline中第一个DataNode节点A将pipelineack发送给client;
7、关闭写入流。
8、 当一个block传输完成之后,client再次请求NameNode上传第二个block到服务器
RPC 指的是 远程过程调用。是集群中多个组件、多个模块进行数据通信的一种方式。
文件读取过程
详细步骤解析
1、客户端通过调用FileSystem对象的open()来读取希望打开的文件。
2、 Client向NameNode发起RPC请求,来确定请求文件block所在的位置;
3、 NameNode会视情况返回文件的部分或者全部block列表,对于每个block,NameNode 都会返回含有该 block 副本的 DataNode 地址; 这些返回的 DN 地址,会按照集群拓扑结构得出 DataNode 与客户端的距离,然后进行排序,排序两个规则:网络拓扑结构中距离 Client 近的排靠前;心跳机制中超时汇报的 DN 状态为 STALE,这样的排靠后;
4、 Client 选取排序靠前的 DataNode 来读取 block,如果客户端本身就是DataNode,那么将从本地直接获取数据(短路读取特性);
5、 底层上本质是建立 Socket Stream(FSDataInputStream),重复的调用父类 DataInputStream 的 read 方法,直到这个块上的数据读取完毕;
6、并行读取,若失败重新读取
7、 当读完列表的 block 后,若文件读取还没有结束,客户端会继续向NameNode 获取下一批的 block 列表;
8、返回后续block列表
9、 最终关闭读流,并将读取来所有的 block 会合并成一个完整的最终文件。
说明:
1、读取完一个 block 都会进行 checksum 验证,如果读取 DataNode 时出现错误,客户端会通知 NameNode,然后再从下一个拥有该 block 副本的DataNode 继续读。
2、read 方法是并行的读取 block 信息,不是一块一块的读取;NameNode 只是返回Client请求包含块的DataNode地址,并不是返回请求块的数据;
数据完整性
- 当DateNode读取block的时候,它会计算checksum
- 如果计算后的checksum,与block创建时(第一次上传时会计算checksum值)值不一样,说明block已经损坏。
- client读取其他DateNode上的block。
- DateNode在其文件创建后周期验证checksum
掉线时限参数设置
DateNode进程死亡或者网络故障造成DateNode无法与NameNode通信,NameNode不会立即把该节点判定为死亡,要经过一段时间,这段时间称为超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时长为timeout,则超时时长的计算公式为:timeout = 2 * dfs.namenode.heartbeat.recheck-interval + 10 * dfs.heartbeat.interval。 而默认的 dfs.namenode.heartbeat.recheck-interval 大小为5分钟,dfs.heartbeat.interval 默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。
<property>
<name>dfs.namenode.heartbeat.recheck-interval</name>
<value>300000</value>
</property>
<property>
<name> dfs.heartbeat.interval </name>
<value>3</value>
</property>
DateNode的目录结构
和NameNode不同的是,DateNode的存储目录是初始阶段自动创建的,不需要额外格式化。在**/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/datanodeDatas/current**这个目录下查看版本号
[root@node01 current]# cat VERSION
#Thu Mar 14 07:58:46 CST 2019
storageID=DS-47bcc6d5-c9b7-4c88-9cc8-6154b8a2bf39
clusterID=CID-dac2e9fa-65d2-4963-a7b5-bb4d0280d3f4
cTime=0
datanodeUuid=c44514a0-9ed6-4642-b3a8-5af79f03d7a4
storageType=DATA_NODE
layoutVersion=-56
具体解释
- storageID:存储id号
- clusterID:集群id全局唯一
- cTime:属性标记了DateNode存储系统创建时间,对于刚刚格式化的存储系统,这个属性为0;但是在文件系统升级之后,该值会更新到新的时间戳
- DateNodeUuid:DateNode的唯一标识
- storageType:存储类型
- layoutVersion:是一个负整数。通常只有HDFS增加新特性时才会更新这个版本号
一次写入,多次读出
HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改。正因为如此,HDFS适合用来做大数据分析的底层存储服务,并不适合用来做网盘等应用,因为修改不方便,延迟大,网络开销大,成本太高。